МИНИСТЕРСТВО РЕГИОНАЛЬНОГО РАЗВИТИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

СВОД ПРАВИЛ

СП 63.13330.2012

БЕТОННЫЕ И ЖЕЛЕЗОБЕТОННЫЕ
КОНСТРУКЦИИ.
ОСНОВНЫЕ ПОЛОЖЕНИЯ

Актуализированная редакция

СНиП 52-01-2003

Москва 2012

Предисловие

Цели и принципы стандартизации в Российской Федерации установлены Федеральным законом от 27 декабря 2002 г. № 184-ФЗ «О техническом регулировании», а правила разработки - постановлением Правительства Российской Федерации «О порядке разработки и утверждения сводов правил» от 19 ноября 2008 г. № 858.

Сведения о своде правил

1 ИСПОЛНИТЕЛИ - НИИЖБ им. А.А. Гвоздева - институт ОАО «НИЦ «Строительство»

2 ВНЕСЕН Техническим комитетом по стандартизации ТК 465 «Строительство»

3 ПОДГОТОВЛЕН к утверждению Департаментом архитектуры, строительства и градостроительной политики

4 УТВЕРЖДЕН приказом Министерства регионального развития Российской Федерации (Минрегион России) от 29 декабря 2011 г. № 635/8 и введен в действие с 01 января 2013 г.

5 ЗАРЕГИСТРИРОВАН Федеральным агентством по техническому регулированию и метрологии (Росстандарт). Пересмотр СП 63.13330.2011 «СНиП 52-01-2003 Бетонные и железобетонные конструкции. Основные положения»

Информация об изменениях к настоящему своду правил публикуется в ежегодно издаваемом информационном указателе «Национальные стандарты», а текст изменений и поправок - в ежемесячно издаваемых информационных указателях «Национальные стандарты», В случае пересмотра (замены) или отмены настоящего свода правил соответствующее уведомление будет опубликовано в ежемесячно издаваемом информационном указателе «Национальные стандарты». Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования - на официальном сайте разработчика (Минрегион России) в сети Интернет.

СОДЕРЖАНИЕ

1 Область применения. 3

2 Нормативные ссылки. 4

3 Термины и определения. 5

4 Общие требования к бетонным и железобетонным конструкциям.. 6

5 Требования к расчету бетонных и железобетонных конструкций. 8

5.1 Общие положения. 8

5.2 Требования к расчету бетонных и железобетонных элементов по прочности. 11

5.3 Требования к расчету железобетонных элементов по образованию трещин. 13

5.4 Требования к расчету железобетонных элементов по раскрытию трещин. 14

5.5 Требования к расчету железобетонных элементов по деформациям.. 14

6 Материалы для бетонных и железобетонных конструкций. 15

6.1 Бетон. 15

6.2 Арматура. 28

7 Бетонные конструкции. 32

7.1 Расчет бетонных элементов по прочности. 33

8 Железобетонные конструкции без предварительного напряжения арматуры.. 36

8.1 Расчет элементов железобетонных конструкций по предельным состояниям первой группы.. 36

8.2 Расчет элементов железобетонных конструкций по предельным состояниям второй группы.. 69

9 Предварительно напряженные железобетонные конструкции. 81

9.1 Предварительные напряжения арматуры.. 81

9.2 Расчет элементов предварительно напряженных железобетонных конструкций по предельным состояниям первой группы.. 85

9.3 Расчет предварительно напряженных элементов железобетонных конструкций по предельным состояниям второй группы.. 89

10 Конструктивные требования. 93

10.1 Общие положения. 93

10.2 Требования к геометрическим размерам.. 94

10.3 Требования к армированию.. 94

10.4 Конструирование основных несущих железобетонных конструкций. 101

11 Требования к изготовлению, возведению и эксплуатации бетонных и железобетонных конструкций. 104

11.1 Бетон. 104

11.2 Арматура. 106

11.3 Опалубка. 107

11.4 Бетонные и железобетонные конструкции. 107

11.5 Контроль качества. 108

12 Требования к восстановлению и усилению железобетонных конструкций. 109

12.1 Общие положения. 109

12.2 Натурные обследования конструкций. 109

12.3 Поверочные расчеты конструкций. 110

12.4 Усиление железобетонных конструкций. 111

13 Расчет железобетонных конструкций на выносливость. 111

Приложение А (справочное) Основные буквенные обозначения. 111

Приложение Б (справочное) Расчет закладных деталей. 114

Приложение В (справочное) Расчет конструктивных систем.. 116

Приложение Г (справочное) Диаграммы деформирования бетона. 118

Приложение Д (справочное) Расчет колонн круглого и кольцевого сечений. 120

Приложение Е (справочное) Расчет бетонных шпонок. 122

Приложение Ж (справочное) Расчет коротких консолей. 123

Приложение И (справочное) Расчет сборно-монолитных конструкций. 125

Приложение К (справочное) Учет косвенного армирования при расчете внецентренно сжатых элементов на основе нелинейной деформационной модели. 127

Библиография. 128

Введение

Настоящий свод правил разработан с учетом обязательных требований, установленных в Федеральных законах от 27 декабря 2002 г. № 184-ФЗ «О техническом регулировании», от 30 декабря 2009 г. № 384-ФЗ «Технический регламент о безопасности зданий и сооружений» и содержит требования к расчету и проектированию бетонных и железобетонных конструкций промышленных и гражданских зданий и сооружений.

Свод правил разработан авторским коллективом НИИЖБ им. А.А. Гвоздева - института ОАО «НИЦ «Строительство» (руководитель работы - д-р техн. наук Т.А. Мухамедиев; доктора техн. наук А.С. Залесов, А.И. Звездов, Е.А. Чистяков, канд. техн. наук С.А. Зенин)при участии РААСН (доктора техн. наук В.М. Бондаренко, Н.И. Карпенко, В.И. Травуш)и ОАО «ЦНИИпромзданий» (доктора техн. наук Э.Н. Кодыш, Н.Н. Трекин, инж. И.К. Никитин).

СВОД ПРАВИЛ

БЕТОННЫЕ И ЖЕЛЕЗОБЕТОННЫЕ КОНСТРУКЦИИ. ОСНОВНЫЕ ПОЛОЖЕНИЯ

Concrete and won concrete construction Design requirements

Дата введения 2013-01-01

1 Область применения

Настоящий свод правил распространяется на проектирование бетонных и железобетонных конструкций зданий и сооружений различного назначения, эксплуатируемых в климатических условиях России (при систематическом воздействии температур не выше 50 °С и не ниже минус 70 °С), в среде с неагрессивной степенью воздействия.

Свод правил устанавливает требования к проектированию бетонных и железобетонных конструкций, изготовляемых из тяжелого, мелкозернистого, легкого, ячеистого и напрягающего бетонов.

Требования настоящего свода правил не распространяются на проектирование сталежелезобетонных конструкций, фибробетонных конструкций, сборно-монолитных конструкций, бетонных и железобетонных конструкций гидротехнических сооружений, мостов, покрытий автомобильных дорог и аэродромов и других специальных сооружений, а также на конструкции, изготовляемые из бетонов средней плотностью менее 500 и свыше 2500 кг/м3, бетонополимеров и полимербетонов, бетонов на известковых, шлаковых и смешанных вяжущих (кроме применения их в ячеистом бетоне), на гипсовом и специальных вяжущих, бетонов на специальных и органических заполнителях, бетона крупнопористой структуры.

Настоящий свод правил не содержит требования по проектированию специфических конструкций (пустотные плиты, конструкции с подрезками, капители и т.п.).

2 Нормативные ссылки

В настоящем своде правил использованы ссылки на следующие нормативные

документы:

СП 14.13330.2011 «СНиП II-7-81* Строительство в сейсмических районах»

СП 16.13330.2011 «СНиП II-23-81* Стальные конструкции»

СП 20.13330.2011 «СНиП 2.01.07-85* Нагрузки и воздействия»

СП 22.13330.2011 «СНиП 2.02.01-83* Основания зданий и сооружений»

СП 28.13330.2012 «СНиП 2.03.11-85 Защита строительных конструкций от коррозии»

СП 48.13330.2011 «СНиП 12-01-2004 Организация строительства»

СП 50.13330.2012 «СНиП 23-02-2003 Тепловая защита зданий»

СП 70.13330.2012 «СНиП 3.03.01-87 Несущие и ограждающие конструкции»

СП 122.13330.2012 «СНиП 32-04-97 Тоннели железнодорожные и автодорожные»

СП 130.13330.2012 «СНиП 3.09.01-85 Производство сборных железобетонных конструкций и изделий»

СП 131.13330.2012 «СНиП 23-01-99 Строительная климатология»

ГОСТ Р 52085-2003 Опалубка. Общие технические условия

ГОСТ Р 52086-2003 Опалубка. Термины и определения

ГОСТ Р 52544-2006 Прокат арматурный свариваемый периодического профиля классов А 500С и В 500С для армирования железобетонных конструкций

ГОСТ Р 53231-2008 Бетоны. Правила контроля и оценки прочности

ГОСТ Р 54257-2010 Надежность строительных конструкций и оснований. Основные положения и требования

ГОСТ 4.212-80 СПКП. Строительство. Бетоны. Номенклатура показателей

ГОСТ 535-2005 Прокат сортовой и фасонный из стали углеродистой обыкновенного качества. Общие технические условия.

ГОСТ 5781-82 Сталь горячекатаная для армирования железобетонных конструкций. Технические условия.

ГОСТ 7473-94 Смеси бетонные. Технические условия.

ГОСТ 8267-93 Щебень и гравий из плотных горных пород для строительных работ. Технические условия.

ГОСТ 8736-93 Песок для строительных работ. Технические условия.

ГОСТ 8829-94 Изделия строительные железобетонные и бетонные заводского изготовления. Методы испытаний нагружением. Правила оценки прочности, жесткости и трещиностойкости.

ГОСТ 10060.0-95 Бетоны. Методы определения морозостойкости. Основные требования.

ГОСТ 10180-90 Бетоны. Методы определения прочности по контрольным образцам.

ГОСТ 10181-2000 Смеси бетонные. Методы испытания.

ГОСТ 10884-94 Сталь арматурная термомеханически упрочненная для железобетонных конструкций. Технические условия.

ГОСТ 10922-90 Арматурные и закладные изделия сварные, соединения сварные арматуры и закладных изделий железобетонных конструкций. Общие технические условия.

ГОСТ 12730.0-78 Бетоны. Общие требования к методам определения плотности, влажности, водопоглощения, пористости и водонепроницаемости.

ГОСТ 12730.1-78 Бетоны. Метод определения плотности.

ГОСТ 12730.5-84 Бетоны. Методы определения водонепроницаемости.

ГОСТ 13015-2003 Изделия железобетонные и бетонные для строительства. Общие технические требования. Правила приемки, маркировки, транспортирования и хранения.

ГОСТ 14098-91 Соединения сварные арматуры и закладных изделий железобетонных конструкций. Типы, конструкция и размеры.

ГОСТ 17624-87 Бетоны. Ультразвуковой метод определения прочности.

ГОСТ 22690-88 Бетоны. Определение прочности механическими методами неразрушающего контроля.

ГОСТ 23732-79 Вода для бетонов и растворов. Технические условия.

ГОСТ 23858-79 Соединения сварные стыковые и тавровые арматуры железобетонных конструкций. Ультразвуковые методы контроля качества. Правила приемки.

ГОСТ 24211-91 Добавки для бетонов. Общие технические требования.

ГОСТ 25192-82 Бетоны. Классификация и общие технические требования.

ГОСТ 25781-83 Формы стальные для изготовления железобетонных изделий. Технические условия.

ГОСТ 26633-91 Бетоны тяжелые и мелкозернистые. Технические условия.

ГОСТ 27005-86 Бетоны легкие и ячеистые. Правила контроля средней плотности.

ГОСТ 27006-86 Бетоны. Правила подбора составов.

ГОСТ 28570-90 Бетоны. Методы определения прочности по образцам, отобранным из конструкций.

ГОСТ 30515-97 Цементы. Общие технические условия

Примечание - При пользовании настоящим сводом правил целесообразно проверить действие ссылочных стандартов и классификаторов в информационной системе общего пользования - на официальном сайте национального органа Российской Федерации по стандартизации в сети Интернет или по ежегодно издаваемому информационному указателю «Национальные стандарты», который опубликован на 01 января текущего года, и по соответствующим ежемесячно издаваемым информационным указателям, опубликованным в текущем году. Если ссылочный документ заменен (изменен), то при пользовании настоящим сводом правил следует руководствоваться замененным (измененным) документом. Если ссылочный документ отменен без замены, то положение, в котором дана ссылка на него, применяется в части, не затрагивающей эту ссылку.

3 Термины и определения

В настоящем своде правил применяются следующие термины с соответствующими определениями:

3.1 анкеровка арматуры: Обеспечение восприятия арматурой действующих на нее усилий путем заведения ее на определенную длину за расчетное сечение или устройства на концах специальных анкеров.

3.2 арматура конструктивная: Арматура, устанавливаемая без расчета из конструктивных соображений.

3.3 арматура предварительно напряженная: Арматура, получающая начальные (предварительные) напряжения в процессе изготовления конструкций до приложения внешних нагрузок в стадии эксплуатации.

3.4 арматура рабочая: Арматура, устанавливаемая по расчету.

3.5 защитный слой бетона: Толщина слоя бетона от грани элемента до ближайшей поверхности арматурного стержня.

3.6 конструкции бетонные: Конструкции, выполненные из бетона без арматуры или с арматурой, устанавливаемой по конструктивным соображениям и не учитываемой в расчете; расчетные усилия от всех воздействий в бетонных конструкциях должны быть восприняты бетоном.

3.7 конструкции дисперсно-армированные (фибробетонные, армоцементные): Железобетонные конструкции, включающие дисперсно-расположенные фибры или мелкоячеистые сетки из тонкой стальной проволоки.

3.8 конструкции железобетонные: Конструкции, выполненные из бетона с рабочей и конструктивной арматурой (армированные бетонные конструкции): расчетные усилия от всех воздействий в железобетонных конструкциях должны быть восприняты бетоном и рабочей арматурой.

3.9 конструкции сталежелезобетонные: Железобетонные конструкции, включающие отличные от арматурной стали стальные элементы, работающие совместно с железобетонными элементами.

3.10 коэффициент армирования железобетона μ: Отношение площади сечения арматуры к рабочей площади сечения бетона, выраженное в процентах.

3.11 марка бетона по водонепроницаемости W: Показатель проницаемости бетона, характеризующийся максимальным давлением воды, при котором в условиях стандартных испытаний вода не проникает через бетонный образец.

3.12 марка бетона по морозостойкости F: Установленное нормами минимальное число циклов замораживания и оттаивания образцов бетона, испытанных по стандартным базовым методам, при которых сохраняются их первоначальные физико-механические свойства в нормируемых пределах.

3.13 марка бетона по самонапряжению Sp:Установленное нормами значение предварительного напряжения в бетоне, МПа, создаваемого в результате его расширения при коэффициенте продольного армирования μ = 0,01.

3.14 марка бетона по средней плотности D: Установленное нормами значение плотности, в кг/м3, бетонов, к которым предъявляются требования по теплоизоляции.

3.15 массивная конструкция: Конструкция, для которой отношение поверхности, открытой для ее высыхания, м2, к ее объему, м3, равно или меньше 2.

3.16 морозостойкость бетона: Способность бетона сохранять физико-механические свойства при многократном переменном замораживании и оттаивании, регламентируется маркой по морозостойкости F.

3.17 нормальное сечение: Сечение элемента плоскостью, перпендикулярной к его продольной оси.

3.18 наклонное сечение: Сечение элемента плоскостью, наклонной к его продольной оси и перпендикулярной вертикальной плоскости, проходящей через ось элемента.

3.19 плотность бетона: Характеристика бетона, равная отношению его массы к объему, регламентируется маркой по средней плотности D.

3.20 предельное усилие: Наибольшее усилие, которое может быть воспринято элементом, его сечением при принятых характеристиках материалов.

3.21 проницаемость бетона: Свойство бетона пропускать через себя газы или жидкости при наличии градиента давления (регламентируется маркой по водонепроницаемости W)либо обеспечивать диффузионную проницаемость растворенных в воде веществ в отсутствие градиента давления (регламентируется нормируемыми величинами плотности тока и электрического потенциала).

3.22 рабочая высота сечения: Расстояние от сжатой грани элемента до центра тяжести растянутой продольной арматуры.

3.23 самонапряжение бетона: Напряжение сжатия, возникающее в бетоне конструкции при твердении в результате расширения цементного камня в условиях ограничения этому расширению, регламентируется маркой по самонапряжению Sp.

3.24 стыки арматуры внахлестку: Соединение арматурных стержней по их длине без сварки путем заведения конца одного арматурного стержня относительно конца другого.

4 Общие требования к бетонным и железобетонным конструкциям

4.1 Бетонные и железобетонные конструкции всех типов должны удовлетворять требованиям:

по безопасности;

по эксплуатационной пригодности;

по долговечности,

а также дополнительным требованиям, указанным в задании на проектирование.

4.2 Для удовлетворения требований по безопасности конструкции должны иметь такие начальные характеристики, чтобы при различных расчетных воздействиях в процессе строительства и эксплуатации зданий и сооружений были исключены разрушения любого характера или нарушения эксплуатационной пригодности, связанные с причинением вреда жизни или здоровью граждан, имуществу, окружающей среде, жизни и здоровью животных и растениям.

4.3 Для удовлетворения требований по эксплуатационной пригодности конструкция должна иметь такие начальные характеристики, чтобы при различных расчетных воздействиях не происходило образование или чрезмерное раскрытие трещин, а также не возникали чрезмерные перемещения, колебания и другие повреждения, затрудняющие нормальную эксплуатацию (нарушение требований к внешнему виду конструкции, технологических требований по нормальной работе оборудования, механизмов, конструктивных требований по совместной работе элементов и других требований, установленных при проектировании).

В необходимых случаях конструкции должны иметь характеристики, обеспечивающие требования по теплоизоляции, звукоизоляции, биологической защите и другие требования.

Требования по отсутствию трещин предъявляют к железобетонным конструкциям, у которых при полностью растянутом сечении должна быть обеспечена непроницаемость (находящимся под давлением жидкости или газов, испытывающим воздействие радиации и т.п.), к уникальным конструкциям, к которым предъявляют повышенные требования по долговечности, а также к конструкциям, эксплуатируемым в агрессивной среде в случаях, указанных в СП 28.13330.

В остальных железобетонных конструкциях образование трещин допускается, и к ним предъявляют требования по ограничению ширины раскрытия трещин.

4.4 Для удовлетворения требований долговечности конструкция должна иметь такие начальные характеристики, чтобы в течение установленного длительного времени она удовлетворяла бы требованиям по безопасности и эксплуатационной пригодности с учетом влияния на геометрические характеристики конструкций и механические характеристики материалов различных расчетных воздействий (длительное воздействие нагрузки, неблагоприятные климатические, технологические, температурные и влажностные воздействия, попеременное замораживание и оттаивание, агрессивные воздействия и др.).

4.5 Безопасность, эксплуатационная пригодность, долговечность бетонных и железобетонных конструкций и другие устанавливаемые заданием на проектирование требования должны быть обеспечены выполнением:

требований к бетону и его составляющим;

требований к арматуре;

требований к расчетам конструкций;

конструктивных требований;

технологических требований;

требований по эксплуатации.

Требования по нагрузкам и воздействиям, пределу огнестойкости, непроницаемости, морозостойкости, предельным показателям деформаций (прогибам, перемещениям, амплитуде колебаний), расчетным значениям температуры наружного воздуха и относительной влажности окружающей среды, по защите строительных конструкций от воздействия агрессивных сред и др. устанавливаются соответствующими нормативными документами (СП 20.13330, СП 14.13330, СП 28.13330, СП 22.13330, СП 131.13330, СП 122.13330).

4.6 При проектировании бетонных и железобетонных конструкций надежность конструкций устанавливают согласно ГОСТ Р 54257 полувероятностным методом расчета путем использования расчетных значений нагрузок и воздействий, расчетных характеристик бетона и арматуры (или конструкционной стали), определяемых с помощью соответствующих частных коэффициентов надежности по нормативным значениям этих характеристик, с учетом уровня ответственности зданий и сооружений.

Нормативные значения нагрузок и воздействий, значения коэффициентов надежности по нагрузке, коэффициентов надежности по назначению конструкций, а также деление нагрузок на постоянные и временные (длительные и кратковременные) устанавливают соответствующими нормативными документами для строительных конструкций (СП 20.13330).

Расчетные значения нагрузок и воздействий принимают в зависимости от вида расчетного предельного состояния и расчетной ситуации.

Уровень надежности расчетных значений характеристик материалов устанавливают в зависимости от расчетной ситуации и от опасности достижения соответствующего предельного состояния и регулируют значением коэффициентов надежности по бетону и арматуре (или конструкционной стали).

Расчет бетонных и железобетонных конструкций можно производить по заданному значению надежности на основе полного вероятностного расчета при наличии достаточных данных об изменчивости основных факторов, входящих в расчетные зависимости.

5 Требования к расчету бетонных и железобетонных конструкций

5.1 Общие положения

5.1.1 Расчеты бетонных и железобетонных конструкций следует производить в соответствии с требованиями ГОСТ 27751 по предельным состояниям, включающим:

предельные состояния первой группы, приводящие к полной непригодности эксплуатации конструкций;

предельные состояния второй группы, затрудняющие нормальную эксплуатацию конструкций или уменьшающие долговечность зданий и сооружений по сравнению с предусматриваемым сроком службы.

Расчеты должны обеспечивать надежность зданий или сооружений в течение всего срока их службы, а также при производстве работ в соответствии с требованиями, предъявляемыми к ним.

Расчеты по предельным состояниям первой группы включают:

расчет по прочности;

расчет по устойчивости формы (для тонкостенных конструкций);

расчет по устойчивости положения (опрокидывание, скольжение, всплывание).

Расчеты по прочности бетонных и железобетонных конструкций следует производить из условия, по которому усилия, напряжения и деформации в конструкциях от различных воздействий с учетом начального напряженного состояния (преднапряжение, температурные и другие воздействия) не должны превышать соответствующих значений, установленных нормативными документами.

Расчеты по устойчивости формы конструкции, а также по устойчивости положения (с учетом совместной работы конструкции и основания, их деформационных свойств, сопротивления сдвигу по контакту с основанием и других особенностей) следует производить согласно указаниям нормативных документов на отдельные виды конструкций.

В необходимых случаях в зависимости от вида и назначения конструкции должны быть произведены расчеты по предельным состояниям, связанным с явлениями, при которых возникает необходимость прекращения эксплуатации здания и сооружения (чрезмерные деформации, сдвиги в соединениях и другие явления).

Расчеты по предельным состояниям второй группы включают:

расчет по образованию трещин;

расчет по раскрытию трещин;

расчет по деформациям.

Расчет бетонных и железобетонных конструкций по образованию трещин следует производить из условия, по которому усилия, напряжения или деформации в конструкциях от различных воздействий не должны превышать соответствующих их предельных значений, воспринимаемых конструкцией при образовании трещин.

Расчет железобетонных конструкций по раскрытию трещин производят из условия, по которому ширина раскрытия трещин в конструкции от различных воздействий не должна превышать предельно допустимых значений, устанавливаемых в зависимости от требований, предъявляемых к конструкции, условий ее эксплуатации, воздействия окружающей среды и характеристик материалов с учетом особенностей коррозионного поведения арматуры.

Расчет бетонных и железобетонных конструкций по деформациям следует производить из условия, по которому прогибы, углы поворота, перемещения и амплитуды колебания конструкций от различных воздействий не должны превышать соответствующих предельно допустимых значений.

Для конструкций, в которых не допускается образование трещин, должны быть обеспечены требования по отсутствию трещин. В этом случае расчет по раскрытию трещин не производят.

Для остальных конструкций, в которых допускается образование трещин, расчет по образованию трещин производят для определения необходимости расчета по раскрытию трещин и учета трещин при расчете по деформациям.

5.1.2 Расчет бетонных и железобетонных конструкций (линейных, плоскостных, пространственных, массивных) по предельным состояниям первой и второй групп производят по напряжениям, усилиям, деформациям и перемещениям, вычисленным от внешних воздействий в конструкциях и образуемых ими системах зданий и сооружений с учетом физической нелинейности (неупругих деформаций бетона и арматуры), возможного образования трещин и в необходимых случаях - анизотропии, накопления повреждений и геометрической нелинейности (влияние деформаций на изменение усилий в конструкциях).

Физическую нелинейность и анизотропию следует учитывать в определяющих соотношениях, связывающих между собой напряжения и деформации (или усилия и перемещения), а также в условиях прочности и трещиностойкости материала.

В статически неопределимых конструкциях следует учитывать перераспределение усилий в элементах системы вследствие образования трещин и развития неупругих деформаций в бетоне и арматуре вплоть до возникновения предельного состояния в элементе. При отсутствии методов расчета, учитывающих неупругие свойства железобетона, а также для предварительных расчетов с учетом неупругих свойств железобетона усилия и напряжения в статически неопределимых конструкциях и системах допускается определять в предположении упругой работы железобетонных элементов. При этом влияние физической нелинейности рекомендуется учитывать путем корректировки результатов линейного расчета на основе данных экспериментальных исследований, нелинейного моделирования, результатов расчета аналогичных объектов и экспертных оценок.

При расчете конструкций по прочности, деформациям, образованию и раскрытию трещин на основе метода конечных элементов должны быть проверены условия прочности и трещиностойкости для всех конечных элементов, составляющих конструкцию, а также условия возникновения чрезмерных перемещений конструкции. При оценке предельного состояния по прочности допускается полагать отдельные конечные элементы разрушенными, если это не влечет за собой прогрессирующего разрушения здания или сооружения, и по истечении действия рассматриваемой нагрузки эксплуатационная пригодность здания или сооружения сохраняется или может быть восстановлена.

Определение предельных усилий и деформаций в бетонных и железобетонных конструкциях следует производить на основе расчетных схем (моделей), наиболее близко отвечающих реальному физическому характеру работы конструкций и материалов в рассматриваемом предельном состоянии.

Несущую способность железобетонных конструкций, способных претерпевать достаточные пластические деформации (в частности, при использовании арматуры с физическим пределом текучести), допускается определять методом предельного равновесия.

5.1.3 При расчетах бетонных и железобетонных конструкций по предельным состояниям следует рассматривать различные расчетные ситуации в соответствии с ГОСТ Р 54257, в том числе стадии изготовления, транспортирования, возведения, эксплуатации, аварийные ситуации, а также пожар.

5.1.4 Расчеты бетонных и железобетонных конструкций следует производить на все виды нагрузок, отвечающих функциональному назначению зданий и сооружений, с учетом влияния окружающей среды (климатических воздействий и воды - для конструкций, окруженных водой), а в необходимых случаях - с учетом воздействия пожара, технологических температурных и влажностных воздействий и воздействий агрессивных химических сред.

5.1.5 Расчеты бетонных и железобетонных конструкций производят на действие изгибающих моментов, продольных сил, поперечных сил и крутящих моментов, а также на местное действие нагрузки.

5.1.6 При расчете элементов сборных конструкций на воздействие усилий, возникающих при их подъеме, транспортировании и монтаже, нагрузку от массы элементов следует принимать с коэффициентом динамичности, равным:

1,60 - при транспортировании,

1,40 - при подъеме и монтаже.

Допускается принимать более низкие, обоснованные в установленном порядке, значения коэффициентов динамичности, но не ниже 1,25.

5.1.7 При расчетах бетонных и железобетонных конструкций следует учитывать особенности свойств различных видов бетона и арматуры, влияния на них характера нагрузки и окружающей среды, способов армирования, совместность работы арматуры и бетона (при наличии и отсутствии сцепления арматуры с бетоном), технологию изготовления конструктивных типов железобетонных элементов зданий и сооружений.

5.1.8 Расчет предварительно напряженных конструкций следует производить с учетом начальных (предварительных) напряжений и деформаций в арматуре и бетоне, потерь предварительного напряжения и особенностей передачи предварительного напряжения на бетон.

5.1.9 В монолитных конструкциях должна быть обеспечена прочность конструкции с учетом рабочих швов бетонирования.

5.1.10 При расчете сборных конструкций должна быть обеспечена прочность узловых и стыковых сопряжений сборных элементов, осуществленных путем соединения стальных закладных деталей, выпусков арматуры и замоноличивания бетоном.

5.1.11 При расчете плоских и пространственных конструкций, подвергаемых силовым воздействиям в двух взаимно перпендикулярных направлениях, рассматривают отдельные, выделенные из конструкции плоские или пространственные малые характерные элементы с усилиями, действующими по боковым сторонам элемента. При наличии трещин эти усилия определяют с учетом расположения трещин, жесткости арматуры (осевой и тангенциальной), жесткости бетона (между трещинами и в трещинах) и других особенностей. При отсутствии трещин усилия определяют как для сплошного тела.

Допускается при наличии трещин определять усилия в предположении упругой работы железобетонного элемента.

Расчет элементов следует производить по наиболее опасным сечениям, расположенным под углом по отношению к направлению действующих на элемент усилий, на основе расчетных моделей, учитывающих работу растянутой арматуры в трещине и работу бетона между трещинами в условиях плоского напряженного состояния.

5.1.12 Расчет плоских и пространственных конструкций допускается производить для конструкции в целом на основе метода предельного равновесия, в том числе с учетом деформированного состояния к моменту разрушения.

5.1.13 При расчете массивных конструкций, подвергаемых силовым воздействиям в трех взаимно перпендикулярных направлениях, рассматривают отдельные выделенные из конструкции малые объемные характерные элементы с усилиями, действующими по граням элемента. При этом усилия следует определять на основе предпосылок, аналогичных принятым для плоских элементов (см. 5.1.11).

Расчет элементов следует производить по наиболее опасным сечениям, расположенным под углом по отношению к направлению действующих на элемент усилий, на основе расчетных моделей, учитывающих работу бетона и арматуры в условиях объемного напряженного состояния.

5.1.14 Для конструкций сложной конфигурации (например, пространственных) кроме расчетных методов оценки несущей способности, трещиностойкости и деформативности могут быть использованы также результаты испытания физических моделей.

5.2 Требования к расчету бетонных и железобетонных элементов по прочности

5.2.1 Расчет бетонных и железобетонных элементов по прочности производят:

по нормальным сечениям (при действии изгибающих моментов и продольных сил) - по нелинейной деформационной модели. Для простых типов железобетонных конструкций (прямоугольного, таврового и двутаврового сечений с арматурой, расположенной у верхней и нижней граней сечения) допускается выполнять расчет по предельным усилиям;

по наклонным сечениям (при действии поперечных сил), по пространственным сечениям (при действии крутящих моментов), на местное действие нагрузки (местное сжатие, продавливание) - по предельным усилиям.

Расчет по прочности коротких железобетонных элементов (коротких консолей и других элементов) производят на основе каркасно-стержневой модели.

5.2.2 Расчет по прочности бетонных и железобетонных элементов по предельным усилиям производят из условия, что усилие от внешних нагрузок и воздействий F в рассматриваемом сечении не должно превышать предельного усилия Fult,которое может быть воспринято элементом в этом сечении

F £ Fult.                                                            (5.1)

Расчет бетонных элементов по прочности

5.2.3 Бетонные элементы в зависимости от условий их работы и требований, предъявляемых к ним, следует рассчитывать по нормальным сечениям по предельным усилиям без учета (см. 5.2.4) или с учетом (см. 5.2.5) сопротивления бетона растянутой зоны.

5.2.4 Без учета сопротивления бетона растянутой зоны производят расчет внецентренно сжатых бетонных элементов при значениях эксцентриситета продольной силы, не превышающих 0,9 расстояния от центра тяжести сечения до наиболее сжатого волокна. При этом предельное усилие, которое может быть воспринято элементом, определяют по расчетным сопротивлениям бетона сжатию Rb, равномерно распределенным по условной сжатой зоне сечения с центром тяжести, совпадающим с точкой приложения продольной силы.

Для массивных бетонных конструкций следует принимать в сжатой зоне треугольную эпюру напряжений, не превышающих расчетного значения сопротивления бетона сжатию Rb. При этом эксцентриситет продольной силы относительно центра тяжести сечения не должен превышать 0,65 расстояния от центра тяжести до наиболее сжатого волокна бетона.

5.2.5 С учетом сопротивления бетона растянутой зоны производят расчет внецентренно сжатых бетонных элементов с эксцентриситетом продольной силы, большим указанного в 5.2.4 настоящего раздела, изгибаемых бетонных элементов (которые допускаются к применению), а также внецентренно сжатых элементов с эксцентриситетом продольной силы, равным указанному в 5.2.4, но в которых по условиям эксплуатации не допускается образование трещин. При этом предельное усилие, которое может быть воспринято сечением элемента, определяют как для упругого тела при максимальных растягивающих напряжениях, равных расчетному значению сопротивления бетона осевому растяжению Rbt.

5.2.6 При расчете внецентренно сжатых бетонных элементов следует учитывать влияние продольного изгиба и случайных эксцентриситетов.

Расчет железобетонных элементов по прочности нормальных сечений

5.2.7 Расчет железобетонных элементов по предельным усилиям следует проводить, определяя предельные усилия, которые могут быть восприняты бетоном и арматурой в нормальном сечении, исходя из следующих положений:

сопротивление бетона растяжению принимают равным нулю;

сопротивление бетона сжатию представляется напряжениями, равными расчетному сопротивлению бетона сжатию и равномерно распределенными по условной сжатой зоне бетона;

растягивающие и сжимающие напряжения в арматуре принимаются не более расчетного сопротивления растяжению и сжатию соответственно.

5.2.8 Расчет железобетонных элементов по нелинейной деформационной модели производят на основе диаграмм состояния бетона и арматуры, исходя из гипотезы плоских сечений. Критерием прочности нормальных сечений является достижение предельных относительных деформаций в бетоне или арматуре.

5.2.9 При расчете внецентренно сжатых железобетонных элементов следует учитывать случайный эксцентриситет и влияние продольного изгиба.

Расчет железобетонных элементов по прочности наклонных сечений

5.2.10 Расчет железобетонных элементов по прочности наклонных сечений производят: по наклонному сечению на действие поперечной силы, по наклонному сечению на действие изгибающего момента и по полосе между наклонными сечениями на действие поперечной силы.

5.2.11 При расчете железобетонного элемента по прочности наклонного сечения на действие поперечной силы предельную поперечную силу, которая может быть воспринята элементом в наклонном сечении, следует определять как сумму предельных поперечных сил, воспринимаемых бетоном в наклонном сечении и поперечной арматурой, пересекающей наклонное сечение.

5.2.12 При расчете железобетонного элемента по прочности наклонного сечения на действие изгибающего момента предельный момент, который может быть воспринят элементом в наклонном сечении, следует определять как сумму предельных моментов, воспринимаемых пересекающей наклонное сечение продольной и поперечной арматурой, относительно оси, проходящей через точку приложения равнодействующей усилий в сжатой зоне.

5.2.13 При расчете железобетонного элемента по полосе между наклонными сечениями на действие поперечной силы предельную поперечную силу, которая может быть воспринята элементом, следует определять исходя из прочности наклонной бетонной полосы, находящейся под воздействием сжимающих усилий вдоль полосы и растягивающих усилий от поперечной арматуры, пересекающей наклонную полосу.

Расчет железобетонных элементов по прочности пространственных сечений

5.2.14 При расчете железобетонных элементов по прочности пространственных сечений предельный крутящий момент, который может быть воспринят элементом, следует определять как сумму предельных крутящих моментов, воспринимаемых продольной и поперечной арматурой, расположенной у каждой грани элемента. Кроме того, следует производить расчет по прочности железобетонного элемента по бетонной полосе, расположенной между пространственными сечениями и находящейся под воздействием сжимающих усилий вдоль полосы и растягивающих усилий от поперечной арматуры, пересекающей полосу.

Расчет железобетонных элементов на местное действие нагрузки

5.2.15 При расчете железобетонных элементов на местное сжатие предельную сжимающую силу, которая может быть воспринята элементом, следует определять исходя из сопротивления бетона при объемном напряженном состоянии, создаваемом окружающим бетоном и косвенной арматурой, если она установлена.

5.2.16 Расчет на продавливание производят для плоских железобетонных элементов (плит) при действии сосредоточенных силы и момента в зоне продавливания. Предельное усилие, которое может быть воспринято железобетонным элементом при продавливании, следует определять как сумму предельных усилий, воспринимаемых бетоном и поперечной арматурой, расположенной в зоне продавливания.

5.3 Требования к расчету железобетонных элементов по образованию трещин

5.3.1 Расчет железобетонных элементов по образованию нормальных трещин производят по предельным усилиям или по нелинейной деформационной модели. Расчет по образованию наклонных трещин производят по предельным усилиям.

5.3.2 Расчет по образованию трещин железобетонных элементов по предельным усилиям производят из условия, по которому усилие от внешних нагрузок и воздействий F в рассматриваемом сечении не должно превышать предельного усилия fcrc,ult, которое может быть воспринято железобетонным элементом при образовании трещин.

F £ fcrc,ult.                                                           (5.2)

5.3.3 Предельное усилие, воспринимаемое железобетонным элементом при образовании нормальных трещин, следует определять исходя из расчета железобетонного элемента как сплошного тела с учетом упругих деформаций в арматуре и неупругих деформаций в растянутом и сжатом бетоне при максимальных нормальных растягивающих напряжениях в бетоне, равных расчетным значениям сопротивления бетона осевому растяжению Rbt.ser.

5.3.4 Расчет железобетонных элементов по образованию нормальных трещин по нелинейной деформационной модели производят на основе диаграмм состояния арматуры, растянутого и сжатого бетона и гипотезы плоских сечений. Критерием образования трещин является достижение предельных относительных деформаций в растянутом бетоне.

5.3.5 Предельное усилие, которое может быть воспринято железобетонным элементом при образовании наклонных трещин, следует определять исходя из расчета железобетонного элемента как сплошного упругого тела и критерия прочности бетона при плоском напряженном состоянии «сжатие-растяжение».

5.4 Требования к расчету железобетонных элементов по раскрытию трещин

5.4.1 Расчет железобетонных элементов производят по раскрытию различного вида трещин в тех случаях, когда расчетная проверка на образование трещин показывает, что трещины образуются.

5.4.2 Расчет по раскрытию трещин производят из условия, по которому ширина раскрытия трещин от внешней нагрузки асrсне должна превосходить предельно допустимого значения ширины раскрытия трещин acrc,ult.

acrc£ acrc,ult.                                                         (5.3)

5.4.3 Ширину раскрытия нормальных трещин определяют как произведение средних относительных деформаций арматуры на участке между трещинами и длины этого участка. Средние относительные деформации арматуры между трещинами определяют с учетом работы растянутого бетона между трещинами. Относительные деформации арматуры в трещине определяют из условно упругого расчета железобетонного элемента с трещинами с использованием приведенного модуля деформации сжатого бетона, установленного с учетом влияния неупругих деформаций бетона сжатой зоны, или по нелинейной деформационной модели. Расстояние между трещинами определяют из условия, по которому разность усилий в продольной арматуре в сечении с трещиной и между трещинами должна быть воспринята усилиями сцепления арматуры с бетоном на длине этого участка.

Ширину раскрытия нормальных трещин следует определять с учетом характера действия нагрузки (повторяемости, длительности и т.п.) и вида профиля арматуры.

5.4.4 Предельно допустимую ширину раскрытия трещин acrc,ultследует устанавливать исходя из эстетических соображений, наличия требований к проницаемости конструкций, а также в зависимости от длительности действия нагрузки, вида арматурной стали и ее склонности к развитию коррозии в трещине (с учетом СП 28.13330).

5.5 Требования к расчету железобетонных элементов по деформациям

5.5.1 Расчет железобетонных элементов по деформациям производят из условия, по которому прогибы или перемещения конструкций f от действия внешней нагрузки не должны превышать предельно допустимых значений прогибов или перемещений fult.

f £ fult.                                                              (5.4)

5.5.2 Прогибы или перемещения железобетонных конструкций определяют по общим правилам строительной механики в зависимости от изгибных, сдвиговых и осевых деформационных характеристик железобетонного элемента в сечениях по его длине (кривизна, углы сдвига и т.д.).

5.5.3 В тех случаях, когда прогибы железобетонных элементов в основном зависят от изгибных деформаций, значения прогибов определяют по кривизнам элементов или по жесткостным характеристикам.

Кривизну железобетонного элемента определяют как частное деления изгибающего момента на жесткость железобетонного сечения при изгибе.

Жесткость рассматриваемого сечения железобетонного элемента определяют по общим правилам сопротивления материалов: для сечения без трещин - как для условно упругого сплошного элемента, а для сечения с трещинами - как для условно упругого элемента с трещинами (принимая линейную зависимость между напряжениями и деформациями). Влияние неупругих деформаций бетона учитывают с помощью приведенного модуля деформаций бетона, а влияние работы растянутого бетона между трещинами - с помощью приведенного модуля деформаций арматуры.

Расчет деформаций железобетонных конструкций с учетом трещин производят в тех случаях, когда расчетная проверка на образование трещин показывает, что трещины образуются. В противном случае производят расчет деформаций как для железобетонного элемента без трещин.

Кривизну и продольные деформации железобетонного элемента также определяют по нелинейной деформационной модели исходя из уравнений равновесия внешних и внутренних усилий, действующих в нормальном сечении элемента, гипотезы плоских сечений, диаграмм состояния бетона и арматуры и средних деформаций арматуры между трещинами.

5.5.4 Расчет деформаций железобетонных элементов следует производить с учетом длительности действия нагрузок, устанавливаемых соответствующими нормативными документами.

При вычислении прогибов жесткость участков элемента следует определять с учетом наличия или отсутствия нормальных к продольной оси элемента трещин в растянутой зоне их сечения.

5.5.5 Значения предельно допустимых деформаций принимают в соответствии с указаниями 8.2.20. При действии постоянных и временных длительных и кратковременных нагрузок прогиб железобетонных элементов во всех случаях не должен превышать 1/150 пролета и 1/75 вылета консоли.

6 Материалы для бетонных и железобетонных конструкций

6.1 Бетон

6.1.1 Для бетонных и железобетонных конструкций, проектируемых в соответствии с требованиями настоящего свода правил, следует предусматривать конструкционные бетоны:

тяжелый средней плотности от 2200 до 2500 кг/м3 включительно;

мелкозернистый средней плотности от 1800 до 2200 кг/м3;

легкий;

ячеистый;

напрягающий.

6.1.2 При проектировании бетонных и железобетонных сооружений в соответствии с требованиями, предъявленными к конкретным конструкциям, должны быть установлены вид бетона и его нормируемые показатели качества (ГОСТ 25192, ГОСТ 4.212), контролируемые на производстве.

6.1.3 Основными нормируемыми и контролируемыми показателями качества бетона являются:

класс по прочности на сжатие В;

класс по прочности на осевое растяжение Вt;

марка по морозостойкости F;

марка по водонепроницаемости W;

марка по средней плотности D;

марка по самонапряжению Sp.

Класс бетона по прочности на сжатие В соответствует значению кубиковой прочности бетона на сжатие, МПа, с обеспеченностью 0,95 (нормативная кубиковая прочность).

Класс бетона по прочности на осевое растяжение Btсоответствует значению прочности бетона на осевое растяжение, МПа, с обеспеченностью 0,95 (нормативная прочность бетона).

Допускается принимать иное значение обеспеченности прочности бетона на сжатие и осевое растяжение в соответствии с требованиями нормативных документов для отдельных специальных видов сооружений.

Марка бетона по морозостойкости F соответствует минимальному числу циклов переменного замораживания и оттаивания, выдерживаемых образцом при стандартном испытании.

Марка бетона по водонепроницаемости W соответствует максимальному значению давления воды (в МПа × 10-1), выдерживаемому бетонным образцом при испытании.

Марка бетона по средней плотности D соответствует среднему значению объемной массы бетона (кг/м3).

Марка напрягающего бетона по самонапряжению представляет собой значение предварительного напряжения в бетоне, МПа, создаваемого в результате его расширения при коэффициенте продольного армирования μ = 0,01.

При необходимости устанавливают дополнительные показатели качества бетона, связанные с теплопроводностью, температуростойкостью, огнестойкостью, коррозионной стойкостью (как самого бетона, так и находящейся в нем арматуры), биологической защитой и с другими требованиями, предъявляемыми к конструкции (СП 50.13330, СП 28.13330).

Нормируемые показатели качества бетона должны быть обеспечены соответствующим проектированием состава бетонной смеси (на основе характеристик материалов для бетона и требований к бетону), технологией приготовления бетонной смеси и производства бетонных работ при изготовлении (сооружении) бетонных и железобетонных изделий и конструкций. Нормируемые показатели качества бетона должны контролироваться как в процессе производства работ, так и непосредственно в изготовленных конструкциях.

Необходимые нормируемые показатели качества бетона следует устанавливать при проектировании бетонных и железобетонных конструкций в соответствии с расчетом и условиями изготовления и эксплуатации конструкций с учетом различных воздействий окружающей среды и защитных свойств бетона по отношению к принятому виду арматуры.

Класс бетона по прочности на сжатие В назначают для всех видов бетонов и конструкций.

Класс бетона по прочности на осевое растяжение Btназначают в случаях, когда эта характеристика имеет главенствующее значение в работе конструкции и ее контролируют на производстве.

Марку бетона по морозостойкости F назначают для конструкций, подвергающихся воздействию переменного замораживания и оттаивания.

Марку бетона по водонепроницаемости W назначают для конструкций, к которым предъявляют требования по ограничению водопроницаемости.

Марку бетона по самонапряжению необходимо назначать для самонапряженных конструкций, когда эту характеристику учитывают в расчете и контролируют на производстве.

6.1.4 Для бетонных и железобетонных конструкций следует предусматривать бетоны следующих классов и марок, приведенных в таблицах 6.1 - 6.6.

Таблица 6.1

Бетон

Классы по прочности на сжатие

Тяжелый бетон

В3,5; В5; В7,5; В10; В12,5; В15; В20; В25; В30; В35; В40; В45; В50; В55; В60; В70; В80; В90; В100

Напрягающий бетон

В20; В25; В30; В35; В40; В45; В50; В55; В60; В70

Мелкозернистый бетон групп:

А - естественного твердения или подвергнутый тепловой обработке при атмосферном давлении

В3,5; В5; В7,5; B10; B12,5; В15; В20; В25; В30; В35; В40

Б - подвергнутый автоклавной обработке

В15; В20; В25; В30; В35; В40; В45; В50; В55; В60

Легкий бетон марок по средней плотности:

D800, D900

В2,5; В3,5; В5; В7,5

D1000, D1100

В2,5; В3,5; В5; В7,5; В10; В12,5

D1200, D1300

В2,5; В3,5; В5; В7,5; В10; В12.5; В15; В20

D1400, D1500

В3,5; В5; В7,5; В10; В12,5; В15; В20; В25; В30

D1600, D1700

В7,5; В10; В12,5; В15; В20; В25; В30; В35; В40

D1800, D1900

В15; В20; В25; В30; В35; В40

D2000

В25; В30; В35; В40

Ячеистый бетон при марках по средней плотности:

Автоклавный

Неавтоклавный

D500

В1,5; В2; В2,5

-

D600

В1,5; В2; В2,5; В3,5

В1,5; В2

D700

В2; В2,5; В3,5; В5

В1,5; В2; В2,5

D800

В2,5; В3,5; В5; В7,5

В2; В2,5; В3,5

D900

В3,5; В5; В7,5; В10

В2,5; В3,5; В5

D1000

В7,5; В10; В12,5

В5; В7,5

D1100

В10; В12,5; В15; В17,5

В7,5; В10

D1200

В12,5; В15; В17,5; В20

В10; В12,5

Поризованный бетон при марках по средней плотности:

D800, D900, D1000

В2,5; В3,5; В5

D1100, D1200, D1300

В7,5

D1400

В3,5; В5; В7,5

Примечание - В настоящем своде правил термины «легкий бетон» и «поризованный бетон» используются соответственно для обозначения легкого бетона плотной структуры и легкого бетона поризованной структуры (со степенью поризации свыше 6 %).

Таблица 6.2 - Классы бетона по прочности на осевое растяжение

Бетон

Класс прочности на осевое растяжение

Тяжелый, напрягающий, мелкозернистый бетоны

Вt0,8; Вt1,2; Вt1,6; Вt2,0; Вt2,4; Вt2,8; Вt3,2; Вt3,6; Вt4,0

Легкий бетон

Вt0,8; Вt1,2; Вt1,6; Вt2,0; Вt2,4; Вt2,8; Вt3,2

Таблица 6.3 - Марки бетона по морозостойкости

Бетон

Марки по морозостойкости

Тяжелый, напрягающий и мелкозернистый бетоны

F50; F75; F100; F150; F200; F300; F400; F500; F600; F700; F800; F1000

Легкий бетон

F25; F35; F50; F75; F100; F150; F200; F300; F400; F500

Ячеистый и поризованный бетоны

F15; F25; F35; F50; F75; F100

Таблица 6.4 - Марки бетона водонепроницаемости

Бетон

Марки по водопроницаемости

Тяжелый, мелкозернистый бетоны

W2; W4; W6; W8; W10; W12; W14; W16; W18; W20

Легкий бетон

W2; W4; W6; W8; W10; W12

Примечание - Для напрягающего бетона марка по водонепроницаемости обеспечивается не ниже W12 и в проектах может не указываться.

Таблица 6.5 - Марки бетона по средней плотности

Бетон

Марки по средней плотности

Легкий бетон

D800; D900; D1000; D1100; D1200; D1300; D1400; D1500; D1600; D1700; D1800; D1900; D2000

Ячеистый бетон

D500; D600; D700; D800; D900; D1000; D1100; D1200

Поризованный бетон

D800; D900; D1000; D1100; D1200; D1300; D1400

Таблица 6.6 - Марки бетона по самонапряжению

Бетон

Марки по самонапряжению

Напрягающий бетон

Sp0,6; Sp0,8; Sp1; Sp1,2; Sp1,5; Sp2; Sp3; Sp4.

6.1.5 Проектный возраст бетона, т.е. возраст в котором бетон должен приобрести все нормируемые для него показатели качества, назначают при проектировании, исходя из возможных реальных сроков загружения конструкций проектными нагрузками, с учетом способа возведения конструкций и условий твердения бетона. При отсутствии этих данных класс бетона устанавливают в проектном возрасте 28 сут.

Значение нормируемых отпускной и передаточной прочности бетона в элементах сборных конструкций следует назначать в соответствии с ГОСТ 13015 и стандартами на конструкции конкретных видов.

6.1.6 Для железобетонных конструкций следует применять класс бетона по прочности на сжатие не ниже В15.

Для предварительно напряженных железобетонных конструкций класс бетона по прочности на сжатие следует принимать в зависимости от вида и класса напрягаемой арматуры, но не ниже В20.

Передаточную прочность бетона R(прочность бетона к моменту его обжатия, контролируемая аналогично классу бетона по прочности на сжатие) следует назначать не менее 15 МПа и не менее 50 % принятого класса бетона по прочности на сжатие.

6.1.7 Мелкозернистый бетон без специального экспериментального обоснования не допускается применять для железобетонных конструкций, подвергающихся воздействию многократно повторяющейся нагрузки, а также для предварительно напряженных конструкций пролетом свыше 12 м при армировании проволочной арматурой классов В, Вр и К.

Класс мелкозернистого бетона по прочности на сжатие, применяемого для защиты от коррозии и обеспечения сцепления с бетоном напрягаемой арматуры, расположенной в пазах и на поверхности конструкции, должен быть не ниже В20, а для инъекции каналов - не ниже В25.

6.1.8 Марку бетона по морозостойкости следует назначать в зависимости от требований, предъявляемых к конструкциям, режима их эксплуатации и условий окружающей среды согласно СП 28.13330.

Для надземных конструкций, подвергаемых атмосферным воздействиям окружающей среды при расчетной отрицательной температуре наружного воздуха в холодный период от минус 5 °С до минус 40 °С, принимают марку бетона по морозостойкости не ниже F75. При расчетной температуре наружного воздуха выше минус 5 °С для надземных конструкций марку бетона по морозостойкости не нормируют.

6.1.9 Марку бетона по водонепроницаемости следует назначать в зависимости от требований, предъявляемых к конструкциям, режима их эксплуатации и условий окружающей среды согласно СП 28.13330.

Для надземных конструкций, подвергаемых атмосферным воздействиям при расчетной отрицательной температуре наружного воздуха выше минус 40 °С, а также для наружных стен отапливаемых зданий марку бетона по водонепроницаемости не нормируют.

6.1.10 Основными прочностными характеристиками бетона являются нормативные значения:

сопротивления бетона осевому сжатию Rb,n;

сопротивления бетона осевому растяжению Rbt,n.

Нормативные значения сопротивления бетона осевому сжатию (призменная прочность) и осевому растяжению (при назначении класса бетона на прочность на сжатие) принимают в зависимости от класса бетона по прочности на сжатие В согласно таблице 6.7.

При назначении класса бетона по прочности на осевое растяжение Bt нормативные значения сопротивления бетона осевому растяжению Rbt,n принимают равными числовой характеристике класса бетона на осевое растяжение.

6.1.11 Расчетные значения сопротивления бетона осевому сжатию Rbи осевому растяжению Rbtопределяют по формулам:

                                                           (6.1)

                                                         (6.2)

Значения коэффициента надежности по бетону при сжатии γbпринимают равными:

для расчета по предельным состояниям первой группы:

1,3 - для тяжелого, мелкозернистого, напрягающего и легкого бетонов;

1,5 - для ячеистого бетона;

для расчета по предельным состояниям второй группы: 1,0.

Значения коэффициента надежности по бетону при растяжении γbtпринимают равными:

для расчета по предельным состояниям первой группы при назначении класса бетона по прочности на сжатие:

1,5 - для тяжелого, мелкозернистого, напрягающего и легкого бетонов;

2,3 - для ячеистого бетона;

для расчета по предельным состояниям первой группы при назначении класса бетона по прочности на растяжение:

1,3 - для тяжелого, мелкозернистого, напрягающего и легкого бетонов;

для расчета по предельным состояниям второй группы: 1,0.

Расчетные значения сопротивления бетона Rb, Rbt, Rb,ser, Rbt,ser(с округлением) в зависимости от класса бетона по прочности на сжатие и осевое растяжение приведены: для предельных состояний первой группы - в таблицах 6.8, 6.9, второй группы - в таблице 6.7.

6.1.12 В необходимых случаях расчетные значения прочностных характеристик бетона умножают на следующие коэффициенты условий работы γbt, учитывающие особенности работы бетона в конструкции (характер нагрузки, условия окружающей среды и т.д.):

а) γb1 - для бетонных и железобетонных конструкций, вводимый к расчетным значениям сопротивлений Rbи Rbtи учитывающий влияние длительности действия статической нагрузки:

γb1= 1,0 при непродолжительном (кратковременном) действии нагрузки;

γb1 = 0,9 при продолжительном (длительном) действии нагрузки. Для ячеистых и поризованных бетонов γb1 = 0,85;

б) γb2 - для бетонных конструкций, вводимый к расчетным значениям сопротивления Rbи учитывающий характер разрушения таких конструкций, γb2 = 0,9;

в) γb3 - для бетонных и железобетонных конструкций, бетонируемых в вертикальном положении при высоте слоя бетонирования свыше 1,5 м, вводимый к расчетному значению сопротивления бетона Rb, γb3 = 0,85;

г) γb4 - для ячеистых бетонов, вводимый к расчетному значению сопротивления бетона Rb:

γb4 = 1,00 - при влажности ячеистого бетона 10 % и менее;

γb4 = 0,85 - при влажности ячеистого бетона более 25 %;

по интерполяции - при влажности ячеистого бетона свыше 10 % и менее 25 %.

Влияние попеременного замораживания и оттаивания, а также отрицательных температур, учитывают коэффициентом условий работы бетона γb5£ 1,0. Для надземных конструкций, подвергаемых атмосферным воздействиям окружающей среды при расчетной температуре наружного воздуха в холодный период минус 40 °С и выше, принимают коэффициент γb5 = 1,0. В остальных случаях значения коэффициента принимают в зависимости от назначения конструкции и условий окружающей среды согласно специальным указаниям.


Таблица 6.7

Вид

Бетон

Нормативные сопротивления бетона Rb,n, Rbt,n, МПа, и расчетные сопротивления бетона для предельных состояний второй группы Rb,serи Rbt,ser,МПа, при классе бетона по прочности на сжатие

В1,5

В2

В2,5

В3,5

В5

В7,5

В10

В12,5

В15

В20

В25

В30

В35

В40

В45

В50

В55

В60

В70

В80

В90

В100

Сжатие осевое (призменная прочность) Rb,n, Rb,ser

Тяжелый, мелкозернистый и напрягающий

-

-

-

2,7

3,5

5,5

7,5

9,5

11

15

18,5

22

25,5

29

32

36

39,5

43

50

57

64

71

Легкий

-

-

1,9

2,7

3,5

5,5

7,5

9,5

11

15

18,5

22

25,5

29

-

-

-

-

-

-

-

-

Ячеистый

1,4

1,9

2,4

3,3

4,6

6,9

9,0

10,5

11,5

-

-

-

-

-

-

-

-

-

-

-

-

-

Растяжение осевое Rbt,n и Rbt,ser

Тяжелый, мелкозернистый и напрягающий

-

-

-

0,39

0,55

0,70

0,85

1,00

1,10

1,35

1,55

1,75

1,95

2,10

2,25

2,45

2,60

2,75

3,00

3,30

3,60

3,80

Легкий

-

-

0,29

0,39

0,55

0,70

0,85

1,00

1,10

1,35

1,55

1,75

1,95

2,10

-

-

-

-

-

-

-

-

Ячеистый

0,22

0,26

0,31

0,41

0,55

0,63

0,89

1,00

1,05

-

-

-

-

-

-

-

-

-

-

-

-

-

Примечания

1 Значения сопротивлений приведены для ячеистого бетона средней влажностью 10 %.

2 Для мелкозернистого бетона на песке с модулем крупности 2,0 и менее, а также для легкого бетона на мелком пористом заполнителе значения расчетных сопротивлений Rbt,n, Rbt,serследует принимать с умножением на коэффициент 0,8.

3 Для поризованного бетона, а также для керамзитоперлитобетона на вспученном перлитовом песке значения расчетных сопротивлений Rbt,n, Rbt,serследует принимать как для легкого бетона с умножением на коэффициент 0,7.

4 Для напрягающего бетона значения Rbt,n, Rbt,serследует принимать с умножением на коэффициент 1,2.

Таблица 6.8

Вид

Бетон

Расчетные сопротивления бетона Rb, Rbt,МПа, для предельных состояний первой группы при классе бетона по прочности на сжатие

В1,5

В2

В2,5

В3,5

В5

В7,5

В10

В12,5

В15

В20

В25

в30

B35

В40

В45

В50

В55

В60

В70

В80

В90

В100

Сжатие осевое (призменная прочность)

Тяжелый, мелкозернистый и напрягающий

-

-

-

2,1

2,8

4,5

6,0

7,5

8,5

11,5

14,5

17,0

19,5

22,0

25,0

27,5

30,0

33,0

37,0

41,0

44,0

47,5

Легкий

-

-

1,5

2,1

2,8

4,5

6,0

7,5

8,5

11,5

14,5

17,0

19,5

22,0

-

-

-

-

-

-

-

-

Ячеистый

0,95

1,3

1,6

2,2

3,1

4,6

6,0

7,0

7,7

-

-

-

-

-

-

-

-

-

-

-

-

-

Растяжение осевое

Тяжелый, мелкозернистый и напрягающий

-

-

-

0,26

0,37

0,48

0,56

0,66

0,75

0,90

1,05

1,15

1,30

1,40

1,50

1,60

1,70

1,80

1,90

2,10

2,15

2,20

Легкий

-

-

0,20

0,26

0,37

0,48

0,56

0,66

0,75

0,90

1,05

1,15

1,30

1,40

-

-

-

-

-

-

-

-

Ячеистый

0,09

0,12

0,14

0,18

0,24

0,28

0,39

0,44

0,46

-

-

-

-

-

-

-

-

-

-

-

-

-

Примечания

1 Значения сопротивлений приведены для ячеистого бетона средней влажностью 10 %.

2 Для мелкозернистого бетона на песке с модулем крупности 2,0 и менее, а также для легкого бетона на мелком пористом заполнителе значения расчетных сопротивлений Rbtследует принимать с умножением на коэффициент 0,8.

3 Для поризованного бетона, а также для керамзитоперлитобетона на вспученном перлитовом песке значения расчетных сопротивлений Rbtследует принимать как для легкого бетона с умножением на коэффициент 0.7.

4 Для напрягающего бетона значения Rbtследует принимать с умножением на коэффициент 1,2.

5 Для тяжелых бетонов классов В70 - В100 расчетные значения сопротивления осевому сжатию Rbи осевому растяжению Rbtприняты с учетом дополнительного понижающего коэффициента γb,br, учитывающего увеличение хрупкости высокопрочных бетонов в связи с уменьшением деформаций ползучести и равного , где В - класс бетона по прочности на сжатие.

 


Таблица 6.9

Вид сопротивления

Бетон

Расчетные значения сопротивления бетона для предельных состояний первой группы Rbt, МПа, при классе бетона по прочности на осевое растяжение

Вt 0,8

Вt 1,2

Вt 1,6

Вt 2,0

Вt 2,4

Вt 2,8

Вt 3,2

Растяжение осевое Rbt

Тяжелый, мелкозернистый, напрягающий и легкий

0,62

0,93

1,25

1,55

1,85

2,15

2,45

6.1.13 Основными деформационными характеристиками бетона являются значения:

предельных относительных деформаций бетона при осевом сжатии и растяжении (при однородном напряженном состоянии бетона) εb0и εbt0;

начального модуля упругости Еb;

модуля сдвига G;

коэффициента (характеристики) ползучести φb,cr;

коэффициента поперечной деформации бетона (коэффициента Пуассона) vb,P;

коэффициента линейной температурной деформации бетона αbt.

6.1.14 Значения предельных относительных деформаций тяжелого, мелкозернистого и напрягающего бетонов принимают равными:

при непродолжительном действии нагрузки:

εb0 = 0,002 при осевом сжатии;

εbt0= 0,0001 при осевом растяжении;

при продолжительном действии нагрузки - по таблице 6.10 в зависимости от относительной влажности воздуха окружающей среды.

Таблица 6.10

Относительная влажность воздуха окружающей среды, %

Относительные деформации тяжелого, мелкозернистого и напрягающего бетона при продолжительном действии нагрузки

при сжатии

при растяжении

εb0× 103

εb2× 103

εb1,ref× 103

εbt0× 103

εbt2× 103

εbt1,ref× 103

Выше 75

3,0

4,2

2,4

0,21

0,27

0,19

40 - 75

3,4

4,8

2,8

0,24

0,31

0,22

Ниже 40

4,0

5,6

3,4

0,28

0,36

0,26

Примечания

1 Относительную влажность воздуха окружающей среды принимают по СП 131.13330 как среднюю месячную относительную влажность наиболее теплого месяца для района строительства.

2 Для высокопрочных бетонов значения относительных деформаций εb2следует принимать с умножением на отношение (270 - В)/210.

Значения предельных относительных деформаций для легких, ячеистых и поризованных бетонов следует принимать по специальным указаниям.

Допускается принимать значения предельных относительных деформаций легких бетонов при продолжительном действии нагрузки по таблице 6.4 с понижающим коэффициентом [(0,4 + 0,6ρ/2200) ³ 0,7] (здесь ρ - плотность бетона.)

6.1.15 Значения начального модуля упругости бетона при сжатии и растяжении принимают в зависимости от класса бетона по прочности на сжатие В согласно таблице 6.11. Значения модуля сдвига бетона принимают равным 0,4Еb.

При продолжительном действии нагрузки значения модуля деформаций бетона определяют по формуле

                                                     (6.3)

где φb,cr- коэффициент ползучести бетона, принимаемый согласно 6.1.16.

6.1.16 Значения коэффициента ползучести бетона φb,cr принимают в зависимости от условий окружающей среды (относительной влажности воздуха) и класса бетона. Значения коэффициентов ползучести тяжелого, мелкозернистого и напрягающего бетонов приведены в таблице 6.12.

Значения коэффициента ползучести легких, ячеистых и поризованных бетонов следует принимать по специальным указаниям.

Допускается принимать значения коэффициента ползучести легких бетонов по таблице 6.12 с понижающим коэффициентом (ρ/2200)2.

6.1.17 Значение коэффициента поперечной деформации бетона допускается принимать vb,P = 0,2.

6.1.18 Значение коэффициента линейной температурной деформации бетона при изменении температуры от минус 40 °С до плюс 50 °С принимают:

αbt = 1 × 10-5 °С-1 - для тяжелого, мелкозернистого, напрягающего бетонов и легкого бетона при мелком плотном заполнителе;

αbt = 0,7 × 10~5 °С1- для легкого бетона при мелком пористом заполнителе;

αbt = 1 × 10~5 °С-1 - для ячеистого и поризованного бетонов.


Таблица 6.11

Бетон

Значения начального модуля упругости бетона при сжатии и растяжении Eb, МПа × 10-3, при классе бетона по прочности на сжатие

В1,5

В2

В2,5

В3,5

В5

В7,5

в10

В12,5

B15

B20

B25

в30

В35

В40

В45

В50

В55

В60

В70

В80

В90

В100

Тяжелый

-

-

-

9,5

13,0

16,0

19,0

21,5

24,0

27,5

30,0

32,5

34,5

36,0

37,0

38,0

39,0

39,5

41,0

42,0

42,5

43

Мелкозернистый групп:

А - естественного твердения

-

-

-

7,0

10

13,5

15,5

17,5

19,5

22,0

24,0

26,0

27,5

28,5

-

-

-

-

-

-

-

-

Б - автоклавного твердения

-

-

-

-

-

-

-

-

16,5

18,0

19,5

21,0

22,0

23,0

23,5

24,0

24,5

25,0

-

-

-

-

Легкий и порисованный марки по средней плотности:

D800

-

-

4,0

4,5

5,0

5,5

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

D1000

-

-

5,0

5,5

6,3

7,2

8,0

8,4

-

-

-

-

-

-

-

-

-

-

-

-

-

-

D1200

-

-

6,0

6,7

7,6

8,7

9,5

10,0

10,5

-

-

-

-

-

-

-

-

-

-

-

-

-

D1400

-

-

7,0

7,8

8,8

10,0

11,0

11,7

12,5

13,5

14,5

15,5

-

-

-

-

-

-

-

-

-

-

D1600

-

-

-

9,0

10,0

11,5

12,5

13,2

14,0

15,5

16,5

17,5

18,0

-

-

-

-

-

-

-

-

-

D1800

-

-

-

-

11,2

13,0

14,0

14,7

15,5

17,0

18,5

19,5

20,5

21,0

-

-

-

-

-

-

-

-

D2000

-

-

-

-

-

14,5

16,0

17,0

18,0

19,5

21,0

22,0

23,0

23,5

-

-

-

-

-

-

-

-

Ячеистый автоклавного твердения марки по средней плотности:

D500

1,4

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

D600

1,7

1,8

2,1

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

D700

1,9

2,2

2,5

2,9

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

D800

-

-

2,9

3,4

4,0

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

D900

-

-

-

3,8

4,5

5,5

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

D1000

-

-

-

-

5,0

6,0

7,0

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

D1100

-

-

-

-

-

6,8

7,9

8,3

8,6

-

-

-

-

-

-

-

-

-

-

-

-

-

D1200

-

-

-

-

-

-

8,4

8,8

9,3

-

-

-

-

-

-

-

-

-

-

-

-

-

Примечания

1 Для мелкозернистого бетона группы А, подвергнутого тепловой обработке или при атмосферном давлении, значения начальных модулей упругости бетона следует принимать с коэффициентом 0,89.

2 Для легкого, ячеистого и поризованного бетонов при промежуточных значениях плотности бетона начальные модули упругости принимают по линейной интерполяции.

3 Для ячеистого бетона неавтоклавного твердения значения Еbпринимают как для бетона автоклавного твердения с умножением на коэффициент 0,8.

4 Для напрягающего бетона значения Еb принимают как для тяжелого бетона с умножением на коэффициент α = 0,56 + 0,006 В.


Таблица 6.12

Относительная влажность воздуха окружающей среды, %

Значения коэффициента ползучести бетона φb,crпри классе тяжелого бетона на сжатие

В10

В15

В20

В25

взо

В35

В40

В45

В50

В55

В60 - В100

Выше 75

2,8

2,4

2,0

1,8

1,6

1,5

1,4

1,3

1,2

1,1

1,0

40 - 75

3,9

3,4

2,8

2,5

2,3

2,1

1,9

1,8

1,6

1,5

1,4

Ниже 40

5,6

4,8

4,0

3,6

3,2

3,0

2,8

2,6

2,4

2,2

2,0

Примечание - Относительную влажность воздуха окружающей среды принимают по СП 131.13330 как среднюю месячную относительную влажность наиболее теплого месяца для района строительства.

6.1.19 Диаграммы состояния бетона используют при расчете железобетонных элементов по нелинейной деформационной модели.

В качестве расчетных диаграмм состояния бетона, определяющих связь между напряжениями и относительными деформациями, могут быть использованы любые виды диаграмм бетона: криволинейные, в том числе с ниспадающей ветвью (приложение А), кусочно-линейные (двухлинейные и трехлинейные), отвечающие поведению бетона. При этом должны быть обозначены основные параметрические точки диаграмм (максимальные напряжения и соответствующие деформации, граничные значения и т.д.).

В качестве рабочих диаграмм состояния тяжелого, мелкозернистого и напрягающего бетона, определяющих связь между напряжениями и относительными деформациями, принимают упрощенные трехлинейную и двухлинейную диаграммы (рисунки 6.1, а, б) по типу диаграмм Прандтля.

6.1.20 При трехлинейной диаграмме (рисунок 6.1а) сжимающие напряжения бетона σbв зависимости от относительных деформаций укорочения бетона εbопределяют по формулам:

При 0 £ εb£ εb1

σb = Еb× εb,                                                        (6.4)

При εb1< εb<εb0

0138S10-03623

                                    (6.5)

При εb0£ εb£εb2

σb= Rb.                                                           (6.6)

Значения напряжений σb1принимают

σb1 = 0,6 ×Rb,

а значения относительных деформаций εb1принимают

0138S10-03623

 

а - Трехлинейная диаграмма состояния сжатого бетона;

б - Двухлинейная диаграмма состояния сжатого бетона

Рисунок 6.1- Диаграммы состояния сжатого бетона

Значения относительных деформаций εb2 для тяжелого, мелкозернистого и напрягающего бетонов принимают:

при непродолжительном действии нагрузки:

для бетонов класса по прочности на сжатие В60 и ниже εb2 = 0,0035;

для высокопрочных бетонов класса по прочности на сжатие В70 - В100 εb2принимается по линейному закону от 0,0033 при В70 до 0,0028 при В100;

при продолжительном действии нагрузки - по таблице 6.10.

Значения Rb, Еbи εb0принимают согласно 6.1.11, 6.1.12, 6.1.14, 6.1.15.

6.1.21 При двухлинейной диаграмме (рисунок 6.1, б) сжимающие напряжения бетона σb в зависимости от относительных деформаций εbопределяют по формулам:

при 0 £εb£ εb1, где

σb = Eb.red×εb;                                                        (6.7)

при εb1£ εb£εb2

σ= Rb.                                                            (6.8)

Значения приведенного модуля деформации бетона Eb,redпринимают:

                                                    (6.9)

Значения относительных деформаций εb1,red принимают:

для тяжелого бетона при непродолжительном действии нагрузки εb1,red = 0,0015;

для легкого бетона при непродолжительном действии нагрузки εb1,red = 0,0022;

для тяжелого бетона при продолжительном действии нагрузки по таблице 6.10.

Значения Rb, εb2принимают как в 6.1.20.

6.1.22 Растягивающие напряжения бетона σbtв зависимости от относительных деформаций εbtопределяют по приведенным в 6.1.20 и 6.1.21 диаграммам. При этом расчетные значения сопротивления бетона сжатию Rbзаменяют на расчетные значения сопротивления бетона растяжению Rbtсогласно 6.1.11, 6.1.12, значения начального модуля упругости Ebtопределяют согласно 6.1.15, значения относительной деформации εbt0 принимают согласно 6.1.12, значения относительной деформации εbt2принимают для тяжелого, мелкозернистого и напрягающего бетонов: при непродолжительном действии нагрузки - εbt2 = 0,00015, при продолжительном действии нагрузки - по таблице 6.10. Для двухлинейной диаграммы принимают εbt1,red= 0,00008 при непродолжительном действии нагрузки, а при продолжительном - по таблице 6.10; значения Ebt,red определяют по формуле (6.10), подставляя в нее Rbtи εbt1,red.

6.1.23 При расчете прочности железобетонных элементов по нелинейной деформационной модели для определения напряженно-деформированного состояния сжатой зоны бетона используют диаграммы состояния сжатого бетона, приведенные в 6.1.20 и 6.1.21 с деформационными характеристиками, отвечающими непродолжительному действию нагрузки. При этом в качестве наиболее простой используют двухлинейную диаграмму состояния бетона.

6.1.24 При расчете образования трещин в железобетонных конструкциях по нелинейной деформационной модели для определения напряженно-деформированного состояния сжатого и растянутого бетона используют трехлинейную диаграмму состояния бетона, приведенную в 6.1.20 и 6.1.22, с деформационными характеристиками, отвечающими непродолжительному действию нагрузки. Двухлинейную диаграмму (п.п. 6.1.21), как наиболее простую, используют для определения напряженно-деформированного состояния растянутого бетона при упругой работе сжатого бетона.

6.1.25 При расчете деформаций железобетонных элементов по нелинейной деформационной модели при отсутствии трещин для оценки напряженно-деформированного состояния в сжатом и растянутом бетоне используют трехлинейную диаграмму состояния бетона с учетом непродолжительного и продолжительного действия нагрузки. При наличии трещин для оценки напряженно-деформированного состояния сжатого бетона помимо указанной выше диаграммы используют, как наиболее простую, двухлинейную диаграмму состояния бетона с учетом непродолжительного и продолжительного действия нагрузки.

6.1.26 При расчете раскрытия нормальных трещин по нелинейной деформационной модели для оценки напряженно-деформированного состояния в сжатом бетоне используют диаграммы состояния, приведенные в 6.1.20 и 6.1.21, с учетом непродолжительного действия нагрузки. При этом в качестве наиболее простой используют двухлинейную диаграмму состояния бетона.

6.1.27 Влияние попеременного замораживания и оттаивания, а также отрицательных температур на деформационные характеристики бетона учитывают коэффициентом условий работы γbt£1,0. Для надземных конструкций, подвергаемых атмосферным воздействиям окружающей среды при расчетной температуре наружного воздуха в холодный период минус 40 °С и выше, принимают коэффициент γbt = 1,0. В остальных случаях значения коэффициента γbtпринимают в зависимости от назначения конструкций и условий окружающей среды.

6.1.28 Значения прочностных характеристик бетона при плоском (двухосном) или объемном (трехосном) напряженном состоянии следует определять с учетом вида и класса бетона из критерия, выражающего связь между предельными значениями напряжений, действующих в двух или трех взаимно перпендикулярных направлениях.

Деформации бетона следует определять с учетом плоского или объемного напряженных состояний.

6.1.29 Характеристики бетона-матрицы в дисперсно армированных конструкциях следует принимать как для бетонных и железобетонных конструкций.

Характеристики фибробетона в фибробетонных конструкциях следует устанавливать в зависимости от характеристик бетона, относительного содержания, формы, размеров и расположения фибр в бетоне, ее сцепления с бетоном и физико-механических свойств, а также в зависимости от размеров элемента или конструкции.

6.2 Арматура

6.2.1 При проектировании железобетонных зданий и сооружений в соответствии с требованиями, предъявляемыми к бетонным и железобетонным конструкциям, должны быть установлены вид арматуры, ее нормируемые и контролируемые показатели качества.

6.2.2 Для армирования железобетонных конструкций следует применять отвечающую требованиям соответствующих стандартов или утвержденных в установленном порядке технических условий арматуру следующих видов:

горячекатаную гладкую и периодического профиля с постоянной и переменной высотой выступов (кольцевой и серповидный профиль соответственно) диаметром 6 - 50 мм;

термомеханически упрочненную периодического профиля диаметром 6 - 50 мм;

холоднодеформированную периодического профиля диаметром 3 - 16 мм;

арматурные канаты диаметром 6 - 18 мм.

6.2.3 Основным показателем качества арматуры, устанавливаемым при проектировании, является класс арматуры по прочности на растяжение, обозначаемый:

А - для горячекатаной и термомеханически упрочненной арматуры;

В, Вр - для холоднодеформированной арматуры;

К - для арматурных канатов.

Арматурные канаты подразделяются на:

К7, изготовленные из круглой гладкой проволоки;

К7Т, изготовленные из проволоки периодического профиля;

К70, пластически обжатые, изготовленные из гладкой проволоки.

Классы арматуры по прочности на растяжение отвечают гарантированному значению предела текучести, физического или условного (равного значению напряжений, соответствующих остаточному относительному удлинению 0,1 % или 0,2 %), с обеспеченностью не менее 0,95, определяемому по соответствующим стандартам.

Кроме того, в необходимых случаях к арматуре предъявляют требования по дополнительным показателям качества: свариваемость, пластичность, хладостойкость, коррозионную стойкость, характеристики сцепления с бетоном и др.

6.2.4 Для железобетонных конструкций без предварительного напряжения арматуры в качестве устанавливаемой по расчету арматуры следует преимущественно применять арматуру периодического профиля классов А400, А500 и А600, а также арматуру классов В500 и Вр500 в сварных сетках и каркасах. При обосновании экономической целесообразности допускается применять арматуру более высоких классов.

Для поперечного и косвенного армирования следует преимущественно применять гладкую арматуру класса А240 из стали марок Ст3сп и Ст3пс (с категориями нормируемых показателей не ниже 2 по ГОСТ 535), а также арматуру периодического профиля классов А400, А500, В500 и Вр500.

Для предварительно напряженных железобетонных конструкций следует предусматривать:

в качестве напрягаемой арматуры:

горячекатаную и термомеханически упрочненную периодического профиля классов А600, А800 и А1000;

холоднодеформированную периодического профиля классов от Вр1200 до Вр1600;

канатную 7-проволочную (К7) классов К1400, К1500, К1600, К1700;

в качестве ненапрягаемой арматуры:

горячекатаную гладкую класса А240;

горячекатаную, термомеханически упрочненную и холоднодеформированную периодического профиля классов А400, А500, А600, В500 и Вр500.

6.2.5 При выборе вида и марок стали для арматуры, устанавливаемой по расчету, а также прокатных сталей для закладных деталей следует учитывать температурные условия эксплуатации конструкций и характер их нагружения.

В конструкциях, эксплуатируемых при статической (и квазистатической) нагрузке в отапливаемых зданиях, а также на открытом воздухе и в неотапливаемых зданиях при расчетной температуре минус 40 °С и выше может быть применена арматура всех вышеуказанных классов, за исключением арматуры класса А400 из стали марки 35ГС, класса А240 из стали марки Ст3кп, применяемых при расчетной температуре минус 30 °С и выше.

При расчетной температуре ниже минус 55 °С рекомендуется использовать арматуру класса Ас500С по [1] и А600 из стали марки 20Г2СФБА.

При других условиях эксплуатации класс арматуры и марку стали принимают по специальным указаниям.

При проектировании зоны передачи предварительного напряжения, анкеровки арматуры в бетоне и соединений арматуры внахлестку (без сварки) следует учитывать характер поверхности арматуры (ГОСТ Р 52544, [3]).

При проектировании сварных соединений арматуры следует учитывать способ изготовления арматуры (ГОСТ 14098, [2]).

6.2.6 Для монтажных (подъемных) петель элементов сборных железобетонных и бетонных конструкций следует применять горячекатаную арматурную сталь класса А240 марок Ст3сп и Ст3пс (с категориями нормируемых показателей не ниже 2 по ГОСТ 535).

В случае если монтаж конструкций возможен при расчетной зимней температуре ниже минус 40 °С, для монтажных петель не допускается применять сталь марки Ст3пс.

6.2.7 Основной прочностной характеристикой арматуры является нормативное значение сопротивления растяжению Rs,n, принимаемое в зависимости от класса арматуры по таблице 6.13.

6.2.8 Расчетные значения сопротивления арматуры растяжению Rsопределяют по формуле

                                                        (6.10)

где γs - коэффициент надежности по арматуре, принимаемый равным 1,15 для предельных состояний первой группы и 1,0 - для предельных состояний второй группы.

Расчетные значения сопротивления арматуры растяжению Rsприведены (с округлением) для предельных состояний первой группы в таблице 6.14, второй группы - в таблице 6.13. При этом значения Rs,nдля предельных состояний первой группы приняты равными наименьшим контролируемым значениям по соответствующим стандартам.

Таблица 6.13

Класс арматуры

Номинальный диаметр арматуры, мм

Нормативные значения сопротивления растяжению Rs,nи расчетные значения сопротивления растяжению для предельных состояний второй группы Rs,ser, МПа

А240

6 - 40

240

А400

6 - 40

400

А500

10 - 40

500

А600

10 - 40

600

А800

10 - 32

800

А1000

10 - 32

1000

В500

3 - 16

500

Вр500

3 - 5

500

Вр1200

8

1200

Вр1300

7

1300

Вр1400

4; 5; 6

1400

Вр1500

3

1500

Вр1600

3 - 5

1600

К1400

15

1400

К1500

6 - 18

1500

К1600

6; 9; 11; 12; 15

1600

К1700

6 - 9

1700

Значения расчетного сопротивления арматуры сжатию Rscпринимают равными расчетным значениям сопротивления арматуры растяжению Rs, но не более значений, отвечающих деформациям укорочения бетона, окружающего сжатую арматуру: при кратковременном действии нагрузки - не более 400 МПа, при длительном действии нагрузки - не более 500 МПа.

Для арматуры классов В500 и А600 граничные значения сопротивления сжатию принимаются с понижающим коэффициентом условий работы. Расчетные значения Rsc приведены в таблице 6.14.

Таблица 6.14

Класс арматры

Значения расчетного сопротивления арматуры для предельных состояний первой группы, МПа

растяжению Rs

сжатию Rsc

А240

210

210

А400

350

350

А500

435

435 (400)

А600

520

470 (400)

А800

695

500 (400)

А1000

870

500 (400)

В500

435

415 (380)

Вр500

415

390 (360)

Вр1200

1050

500 (400)

Вр1300

ИЗО

500 (400)

Вр1400

1215

500 (400)

Вр1500

1300

500 (400)

Вр1600

1390

500 (400)

К1400

1215

500 (400)

К1500

1300

500 (400)

К1600

1390

500 (400)

К1700

1475

500 (400)

Примечание - Значения Rscв скобках используют только при расчете на кратковременное действие нагрузки.

6.2.9 В необходимых случаях расчетные значения прочностных характеристик арматуры умножают на коэффициенты условий работы γsi, учитывающие особенности работы арматуры в конструкции.

Расчетные значения Rswдля арматуры классов А240 ... А500, В500 приведены в таблице 6.15.

Для поперечной арматуры всех классов расчетные значения сопротивления Rsw следует принимать не более 300 МПа.

Таблица 6.15

Класс арматуры

Расчетные значения сопротивления поперечной арматуры (хомутов и отогнутых стержней) растяжению для предельных состояний первой группы, МПа

А240

170

А400

280

А500

300

В500

300

6.2.10 Основными деформационными характеристиками арматуры являются значения:

относительных деформаций удлинения арматуры εs0 при достижении напряжениями расчетного сопротивления Rs;

модуля упругости арматуры Еs.

6.2.11 Значения относительных деформаций арматуры εs0принимают равными:

для арматуры с физическим пределом текучести

                                                         (6.11)

для арматуры с условным пределом текучести

                                                   (6.12)

6.2.12 Значения модуля упругости арматуры Esпринимают одинаковыми при растяжении и сжатии и равными:

Еs= 1,95 × 105 МПа - для арматурных канатов (К);

Es= 2,0 × 105 МПа - для остальной арматуры (А и В).

6.2.13 Диаграммы состояния (деформирования) арматуры используют при расчете железобетонных элементов по нелинейной деформационной модели.

При расчете железобетонных элементов по нелинейной деформационной модели в качестве расчетной диаграммы состояния (деформирования) арматуры, устанавливающей связь между напряжениями σsи относительными деформациями εs арматуры, принимают упрощенные диаграммы по типу диаграмм Прандтля для арматуры с физическим пределом текучести классов А240 - А500, В500 двухлинейную диаграмму (рисунок 6.2, а),а для арматуры с условным пределом текучести классов А600 - А1000, Вр1200 - Вр1500, К1400, К1500 и К1600 - трехлинейную (рисунок 6.2, б), без учета упрочнения за площадкой текучести.

Диаграммы состояния арматуры при растяжении и сжатии принимают одинаковыми, с учетом нормируемых расчетных сопротивлений арматуры растяжению и сжатию.

Допускается в качестве расчетных диаграмм состояния арматуры использовать криволинейные расчетные диаграммы, аппроксимирующие фактические диаграммы деформирования арматуры.

6.2.14 Напряжения в арматуре σsсогласно двухлинейной диаграмме состояния арматуры определяют в зависимости от относительных деформаций εs по формулам:

при 0 < εs< εs0

σs = εs× Es;                                                      (6.13)

при εs0£εs£εs2

σs = Rs.                                                         (6.14)

Значения εs0, Esи Rsпринимают согласно 6.2.11, 6.2.12 и 6.2.8. Значения относительной деформации εs2принимают равными 0,025.

Допускается при соответствующем обосновании принимать величину относительной деформации εs2 менее или более значения 0,025 в зависимости от марки стали, типа армирования, критерия надежности конструкции и других факторов.

0138S10-03623

а - двухлинейная диаграмма; б - трехлинейная диаграмма

Рисунок 6.2 - Диаграммы состояния растянутой арматуры

6.2.15 Напряжения в арматуре σsсогласно трехлинейной диаграмме состояния арматуры определяют в зависимости от относительных деформаций εsпо формулам:

При 0 < εs< εs1

σs = εs× Es;                                                      (6.15)

при εs1£εs£εs2

0138S10-03623

                           (6.16)

Значения εs0, Esи Rsпринимают согласно 6.2.11, 6.2.12 и 6.2.8.

Значения напряжений σs1принимают равными 0,9Rs, а напряжений σs2 - равно 1,1Rs.

Значения относительных деформаций εs1принимают равными , а деформаций εs2 - равными 0,015.

7 Бетонные конструкции

Конструкции рассматривают как бетонные, если их прочность обеспечена одним только бетоном.

Бетонные элементы применяют:

а) преимущественно на сжатие при расположении продольной сжимающей силы в пределах поперечного сечения элемента;

б) в отдельных случаях в конструкциях, работающих на сжатие при расположении продольной сжимающей силы за пределами поперечного сечения элемента, а также в изгибаемых конструкциях, когда их разрушение не представляет непосредственной опасности для жизни людей и сохранности оборудования.

Конструкции с арматурой, площадь сечения которой меньше минимально допустимой по конструктивным требованиям 10.3, рассматривают как бетонные.

7.1 Расчет бетонных элементов по прочности

7.1.1 Бетонные элементы рассчитывают по прочности на действие продольных сжимающих сил, изгибающих моментов и поперечных сил, а также на местное сжатие.

7.1.2 Расчет по прочности бетонных элементов при действии продольной сжимающей силы (внецентренное сжатие) и изгибающего момента следует производить для сечений, нормальных к их продольной оси.

Расчет бетонных элементов производят на основе нелинейной деформационной модели согласно 8.1.20 - 8.1.30, принимая в расчетных зависимостях площадь арматуры равной нулю. Допускается расчет бетонных элементов прямоугольного и таврового сечений при действии усилий в плоскости симметрии нормального сечения производить по предельным усилиям согласно 7.1.7 - 7.1.12.

7.1.3 Бетонные элементы в зависимости от условий их работы и требований, предъявляемых к ним, рассчитывают по предельным усилиям без учета или с учетом сопротивления бетона растянутой зоны.

Без учета сопротивления бетона растянутой зоны (рисунок 7.1) производят расчет внецентренно сжатых элементов при расположении продольной сжимающей силы в пределах поперечного сечения элемента, принимая, что достижение предельного состояния характеризуется разрушением сжатого бетона. Сопротивление бетона сжатию при расчете по предельным усилиям условно представляют напряжениями, равными Rb, равномерно распределенными по части сжатой зоны (условной сжатой зоны) с центром тяжести, совпадающим с точкой приложения продольной силы (7.1.9).

С учетом сопротивления бетона растянутой зоны (рисунок 7.2) производят расчет элементов, работающих на сжатие при расположении продольной сжимающей силы за пределами поперечного сечения элемента, изгибаемых элементов, а также элементов, в которых не допускают трещины по условиям эксплуатации конструкций. При этом при расчете по предельным усилиям принимают, что предельное состояние характеризуется достижением предельных усилий в бетоне растянутой зоны, определяемых в предположении упругой работы бетона (7.1.9, 7.1.10, 7.1.12).

0138S10-03623

Рисунок 7.1 - Схема усилий и эпюра напряжений в сечении, нормальном к продольной оси внецентренно сжатого бетонного элемента, рассчитываемого по прочности без учета сопротивления бетона растянутой зоны

0138S10-03623

Рисунок 7.2 - Схема усилий и эпюра напряжений в сечении, нормальном к продольной оси изгибаемого (внецентренно сжатого) бетонного элемента, рассчитываемого по прочности с учетом сопротивления бетона растянутой зоны

7.1.4 Расчет по прочности бетонных элементов при действии поперечных сил производят из условия, по которому сумма соотношений главного растягивающего напряжения к расчетному сопротивлению бетона осевому растяжению  и главного сжимающего напряжения к расчетному сопротивлению бетона осевому сжатию  не должна превышать 1,0.

7.1.5 Расчет по прочности бетонных элементов на действие местной нагрузки (местное сжатие) производят согласно указаниям 8.1.43 - 8.1.45.

7.1.6 В бетонных элементах в случаях, указанных в 10.3.7, необходимо предусматривать конструктивную арматуру.

Расчет внецентренно сжатых бетонных элементов по предельным усилиям

7.1.7 При расчете по прочности внецентренно сжатых бетонных элементов на действие сжимающей продольной силы следует учитывать случайный эксцентриситет еа, принимаемый не менее:

1/600 длины элемента или расстояния между его сечениями, закрепленными от смещения;

1/30 высоты сечения;

10 мм.

Для элементов статически неопределимых конструкций значение эксцентриситета продольной силы относительно центра тяжести приведенного сечения e0принимают равным значению эксцентриситета, полученного из статического расчета, но не менее еа.

Для элементов статически определимых конструкций эксцентриситет e0принимают равным сумме эксцентриситетов - из статического расчета конструкций и случайного.

7.1.8 При гибкости элементов  > 14 необходимо учитывать влияние на их несущую способность прогибов путем умножения значений e0на коэффициент η,определяемый согласно 7.1.11.

7.1.9 Расчет внецентренно сжатых бетонных элементов при расположении продольной сжимающей силы в пределах поперечного сечения элемента производят из условия

N £ Rb× Ab,                                                         (7.1)

где N - действующая продольная сила;

Аb- площадь сжатой зоны бетона, определяемая из условия, что ее центр тяжести совпадает с точкой приложения продольной силы N (с учетом прогиба).

Для элементов прямоугольного сечения

0138S10-03623

                                   (7.2)

Допускается расчет внецентренно сжатых элементов прямоугольного сечения при эксцентриситете продольной силы e0£h/30 и l0£ 20h производить из условия

N£ φ× Rb× A,                                                        (7.3)

где А - площадь поперечного сечения элемента;

φ - коэффициент, принимаемый при длительном действии нагрузки по таблице 7.1 в зависимости от гибкости  элемента, при кратковременном действии нагрузки значения φ определяют по линейному закону, принимая φ = 0,9 при  = 10 и φ = 0,85 при  = 20;

l0 - расчетная длина элемента, определяемая как для железобетонных элементов.

Таблица 7.1

l0/h

6

10

15

20

φ

0,92

0,9

0,8

0,6

Внецентренно сжатые бетонные элементы, в которых появление трещин не допускается по условиям эксплуатации, независимо от расчета из условия (7.1) должны быть проверены с учетом сопротивления бетона растянутой зоны из условия

0138S10-03623

                                                  (7.4)

Для элементов прямоугольного сечения условие (7.4) имеет вид

                                                     (7.5)

В формулах (7.4) и (7.5):

А - площадь поперечного сечения бетонного элемента;

I - момент инерции сечения бетонного элемента относительно его центра тяжести;

yt - расстояние от центра тяжести сечения элемента до наиболее растянутого волокна;

η - коэффициент, определяемый согласно указаниям 7.1.11.

7.1.10 Расчет внецентренно сжатых бетонных элементов при расположении продольной сжимающей силы за пределами поперечного сечения элемента производят из условий (7.4) и (7.5).

7.1.11 Значение коэффициента η, учитывающего влияние прогиба на значение эксцентриситета продольной силы е0, определяют по формуле

                                                      (7.6)

где Ncr- условная критическая сила, определяемая по формуле

                                                      (7.7)

где D - жесткость элемента в предельной по прочности стадии, определяемая как для железобетонных элементов, но без учета арматуры, согласно 8.1.15.

Расчет изгибаемых бетонных элементов по предельным усилиям

7.1.12 Расчет изгибаемых бетонных элементов следует производить из условия

M £ Mult,                                                           (7.8)

где М - изгибающий момент от внешней нагрузки;

Мult - предельный изгибающий момент, который может быть воспринят сечением элемента.

Значение Мultопределяют по формуле

Mult = Rbt×W,                                                       (7.9)

где W - момент сопротивления сечения элемента для крайнего растянутого волокна.

Для элементов прямоугольного сечения

                                                       (7.10)

8 Железобетонные конструкции без предварительного напряжения арматуры

8.1 Расчет элементов железобетонных конструкций по предельным состояниям первой группы

Расчет железобетонных элементов по прочности

Железобетонные элементы рассчитывают по прочности на действие изгибающих моментов, продольных сил, поперечных сил, крутящих моментов и на местное действие нагрузки (местное сжатие, продавливание).

Расчет по прочности железобетонных элементов на действие изгибающих моментов и продольных сил

Общие положения

8.1.1 Расчет по прочности железобетонных элементов при действии изгибающих моментов и продольных сил (внецентренное сжатие или растяжение) следует производить для сечений, нормальных к их продольной оси.

Расчет по прочности нормальных сечений железобетонных элементов следует производить на основе нелинейной деформационной модели согласно 8.1.20 - 8.1.30.

Допускается производить расчет на основе предельных усилий:

железобетонных элементов прямоугольного, таврового и двутаврового сечений с арматурой, расположенной у перпендикулярных плоскости изгиба граней элемента, при действии усилий в плоскости симметрии нормальных сечений согласно 8.1.4 - 8.1.16;

внецентренно сжатых элементов круглого и кольцевого поперечных сечений - по указаниям приложения Г.

8.1.2 При расчете внецентренно сжатых элементов следует учитывать влияние прогиба на их несущую способность, как правило, путем расчета конструкций по деформированной схеме.

Допускается производить расчет конструкций по недеформированной схеме, учитывая при гибкости l0/i> 14 влияние прогиба элемента на его прочность путем умножения начального эксцентриситета e0на коэффициент η, определяемый согласно указаниям 8.1.15.

8.1.3 Для железобетонных элементов, у которых предельное усилие по прочности оказывается меньше предельного усилия по образованию трещин (пп. 8.2.8 - 8.2.14), площадь сечения продольной растянутой арматуры должна быть увеличена по сравнению с требуемой из расчета по прочности не менее чем на 15 %, или определена из расчета по прочности на действие предельного усилия по образованию трещин.

Расчет по прочности нормальных сечений по предельным усилиям

8.1.4 Предельные усилия в сечении, нормальном к продольной оси элемента, следует определять исходя из следующих предпосылок:

сопротивление бетона растяжению принимают равным нулю;

сопротивление бетона сжатию представляется напряжениями, равными Rbи равномерно распределенными по сжатой зоне бетона;

деформации (напряжения) в арматуре определяют в зависимости от высоты сжатой зоны бетона;

растягивающие напряжения в арматуре принимают не более расчетного сопротивления растяжению Rs;

сжимающие напряжения в арматуре принимают не более расчетного сопротивления сжатию Rsc.

8.1.5 Расчет по прочности нормальных сечений следует производить в зависимости от соотношения между значением относительной высоты сжатой зоны бетона , определяемым из соответствующих условий равновесия, и значением граничной относительной высоты сжатой зоны ξR, при котором предельное состояние элемента наступает одновременно с достижением в растянутой арматуре напряжения, равного расчетному сопротивлению Rs.

8.1.6 Значение ξrопределяют по формуле

                                                  (8.1)

где εs,el - относительная деформация растянутой арматуры при напряжениях, равных Rs

                                                             (8.2)

εb2 - относительная деформация сжатого бетона при напряжениях, равных Rb, принимаемая в соответствии с указаниями 6.1.20.

Для тяжелого бетона классов В70 - В100 и для мелкозернистого бетона в числителе формулы (8.1) вместо 0,8 следует принимать 0,7.

8.1.7 При расчете внецентренно сжатых железобетонных элементов в начальном эксцентриситете приложения продольной силы е0следует учитывать случайный эксцентриситет еа, принимаемый не менее:

1/600 длины элемента или расстояния между его сечениями, закрепленными от смещения;

1/30 высоты сечения;

10 мм.

Для элементов статически неопределимых конструкций значение эксцентриситета продольной силы относительно центра тяжести приведенного сечения е0принимают равным значению эксцентриситета, полученного из статического расчета, но не менее еа.

Для элементов статически определимых конструкций эксцентриситет е0принимают равным сумме эксцентриситетов из статического расчета конструкций и случайного.

Расчет изгибаемых элементов

8.1.8 Расчет по прочности сечений изгибаемых элементов производят из условия

М £ Мult,                                                             (8.3)

где М - изгибающий момент от внешней нагрузки:

Mult - предельный изгибающий момент, который может быть воспринят сечением элемента.

8.1.9 Значение Миltдля изгибаемых элементов прямоугольного сечения (рисунок 8.1) при  определяют по формуле

Mult = Rb× b × x(h0 - 0,5x) + Rsc× A's×(h0 - a'),                              (8.4)

при этом высоту сжатой зоны х определяют по формуле

0138S10-03623

                                                   (8.5)

8.1.10 Значение Mult для изгибаемых элементов, имеющих полку в сжатой зоне (тавровые и двутавровые сечения), при  определяют в зависимости от положения границы сжатой зоны:

а) если граница проходит в полке (рисунок 8.2, а), т.е. соблюдается условие

Rs× As£ Rb× b'f× h'f + Rsc× A's,                                          (8.6)

значение Multопределяют по 8.1.9 как для прямоугольного сечения шириной b'f;

б) если граница проходит в ребре (рисунок 8.2, б), т.е. условие (8.6) не соблюдается, значение Mult определяют по формуле

Mult = Rb× b × x(h0 - 0,5x) + Rb(b'f - b)h'f(h0 - 0,5× h'f) + Rsc× A's(h0 - a'),             (8.7)

при этом высоту сжатой зоны бетона х определяют по формуле

0138S10-03623

                                       (8.8)

0138S10-03623

Рисунок 8.1 - Схема усилий и эпюра напряжений в сечении, нормальном к продольной оси изгибаемого железобетонного элемента, при его расчете по прочности

0138S10-03623

Рисунок 8.2 - Положение границы сжатой зоны в сечении изгибаемого железобетонного элемента

8.1.11 Значение b'f, вводимое в расчет, принимают из условия, что ширина свеса полки в каждую сторону от ребра должна быть не более 1/6 пролета элемента и не более:

а) при наличии поперечных ребер или при h'f³ 0,1h - 1/2 расстояния в свету между продольными ребрами;

б) при отсутствии поперечных ребер (или при расстояниях между ними больших, чем расстояния между продольными ребрами) и h'f<0,1h - 6h'f;

в) при консольных свесах полки:

при h'f³ 0,1h........................... 6h'f;

при 0,05h £ h'f< 0,1h............. 3h'f;

при h'f< 0,05h - свесы не учитывают.

8.1.12 При расчете по прочности изгибаемых элементов рекомендуется соблюдать условие x £ξR× h0.

В случае, когда по конструктивным соображениям или из расчета по предельным состояниям второй группы площадь растянутой арматуры принята большей, чем это требуется для соблюдения условия x £ξR× h0, допускается предельный изгибающий момент Multопределять по формулам (8.4) или (8.7), подставляя в них значения высоты сжатой зоны x R× h0.

8.1.13 При симметричном армировании, когда Rs× A = Rsc× A's, значение Мultопределяют по формуле

Mult = Rs× As(h0 - a').                                                  (8.9)

Если вычисленная без учета сжатой арматуры (A's= 0) высота сжатой зоны х <2а', в формулу (8.9) подставляют вместо а' значение x/2.

Расчет внецеитренно сжатых элементов

8.1.14 Расчет по прочности прямоугольных сечений внецеитренно сжатых элементов производят из условия

N × e £Rb× b × х(h0 - 0,5х) + R× А's(h0 - a'),                               (8.10)

где N - продольная сила от внешней нагрузки;

е - расстояние от точки приложения продольной силы N до центра тяжести сечения растянутой или наименее сжатой (при полностью сжатом сечении элемента) арматуры, равное

                                                  (8.11)

Здесь η - коэффициент, учитывающий влияние продольного изгиба (прогиба) элемента на его несущую способность и определяемый согласно 8.1.15.

e0 - по 8.1.7.

Высоту сжатой зоны х определяют:

а) при ξ = x/h0£ ξR (рисунок 8.3) по формуле

0138S10-03623

                                            (8.12)

б) при ξ = x/h0> ξR по формуле

0138S10-03623

                                      (8.13)

0138S10-03623

Рисунок 8.3 - Схема усилий и эпюра напряжений в сечении, нормальном к продольной оси внецентренно сжатого железобетонного элемента, при расчете его по прочности

8.1.15 Значение коэффициента η при расчете конструкций по недеформированной схеме определяют по формуле

                                                       (8.14)

где N - продольная сила от внешней нагрузки;

Ncr - условная критическая сила, определяемая по формуле

                                                       (8.15)

Здесь D - жесткость железобетонного элемента в предельной по прочности стадии, определяемая согласно указаниям расчета по деформациям;

l0 - расчетная длина элемента, определяемая согласно 8.1.17.

Допускается значение D определять по формуле

D = kbEbI + ksEsIs,

где Еb, Es - модули упругости бетона и арматуры соответственно;

I, Is - моменты инерции площадей сечения бетона и всей продольной арматуры соответственно относительно оси, проходящей через центр тяжести поперечного сечения элемента;

ks= 0,7;

φl - коэффициент, учитывающий влияние длительности действия нагрузки φl = 1 + Ml1/M1, но не более 2.

здесь М1, Мl1 - моменты относительно центра наиболее растянутого или наименее сжатого (при целиком сжатом сечении) стержня соответственно от действия полной нагрузки и от действия постоянных и длительных нагрузок;

δе- относительное значение эксцентриситета продольной силы e0/h, принимаемое не менее 0,15 и не более 1,5.

Допускается уменьшать значение коэффициента ηс учетом распределения изгибающих моментов по длине элемента, характера его деформирования и влияния прогибов на значение изгибающего момента в расчетном сечении путем расчета конструкции как упругой системы.

8.1.16 Расчет по прочности прямоугольных сечений внецентренно сжатых элементов с арматурой, расположенной у противоположных в плоскости изгиба сторон

сечения, при эксцентриситете продольной силы е0£ h/30 и гибкости l0/h£ 20 допускается производить из условия

N £Nult,                                                           (8.16)

где Nult - предельное значение продольной силы, которую может воспринять элемент, определяемое по формуле

Nult = φ×(Rb× A + Rsc× As,tot).                                       (8.17)

Здесь А - площадь бетонного сечения;

As.tot - площадь всей продольной арматуры в сечении элемента;

φ - коэффициент, принимаемый при длительном действии нагрузки по таблице 8.1 в зависимости от гибкости элемента; при кратковременном действии нагрузки значения φ определяют по линейному закону, принимая φ = 0,9 при l0/h = 10 и φ = 0,85 при l0/h = 20.

Таблица 8.1

Класс бетона

φ при l0/h, равном

6

10

15

20

В20 - В55

0,92

0,9

0,83

0,7

В60

0,91

0,89

0,80

0,65

В80

0,90

0,88

0,79

0,64

8.1.17 Расчетную длину l0 внецентренно сжатого элемента определяют как для элементов рамной конструкции с учетом ее деформированного состояния при наиболее невыгодном для данного элемента расположении нагрузки, принимая во внимание неупругие деформации материалов и наличие трещин.

Допускается расчетную длину l0элементов постоянного поперечного сечения по длине / при действии продольной силы принимать равной:

а) для элементов с шарнирным опиранием на двух концах - 1,0l;

б) для элементов с жесткой заделкой (исключающей поворот опорного сечения) на одном конце и незакрепленным другим концом (консоль) - 2,0l;

в) для элементов с шарнирным несмещаемым опиранием на одном конце, а на другом конце:

с жесткой (без поворота) заделкой - 0,7l;

с податливой (допускающей ограниченный поворот) заделкой - 0,9l;

г) для элементов с податливым шарнирным опиранием (допускающем ограниченное смещение опоры) на одном конце, а на другом конце:

с жесткой (без поворота) заделкой - 1,5l;

с податливой (с ограниченным поворотом) заделкой - 2,0l;

д) для элементов с несмещаемыми заделками на двух концах:

жесткими (без поворота) - 0,5l;

податливыми (с ограниченным поворотом) - 0,8l;

е) для элементов с ограниченно смещаемыми заделками на двух концах: жесткими (без поворота) - 0,8l;

податливыми (с ограниченным поворотом) - 1,2l.

Расчет центрально растянутых элементов

8.1.18 Расчет по прочности сечений центрально растянутых элементов следует производить из условия

N £Nult,                                                          (8.18)

где N - продольная растягивающая сила от внешних нагрузок;

Nult- предельное значение продольной силы, которое может быть воспринято элементом.

Значение силы Nultопределяют по формуле

Nult = Rs×As,tot,                                                   (8.19)

где As,tot - площадь сечения всей продольной арматуры.

Расчет внецентренно растянутых элементов

8.1.19 Расчет по прочности прямоугольных сечений внецентренно растянутых элементов следует производить в зависимости от положения продольной силы N:

а) если продольная сила N приложена между равнодействующими усилий в арматуре S и S' (рисунок 8.4, а) - из условий

N × e £ Mult;                                                        (8.20)

N × e' £ M'ult,                                                       (8.21)

где N × e и N × e' - усилия от внешних нагрузок;

Мultи M'ult - предельные усилия, которые может воспринять сечение.

Усилия Мultи M'ultопределяют по формулам

Мult = Rs× A's(h0 - a');                                                (8.22)

М'ult = Rs× As(h0 - a');                                                (8.23)

б) если продольная сила N приложена за пределами расстояния между равнодействующими усилий в арматуре S и S' (рисунок 8.4, б) - из условия (8.20), определяя предельный момент Мultпо формуле

Мult= Rb× b × x(h0 - 0,5x) + Rsc× A's(h0 - a'),                                   (8.24)

при этом высоту сжатой зоны х определяют по формуле

0138S10-03623

                                            (8.25)

Если полученное из расчета по формуле (8.25) значение х >ξR×h0, в формулу (8.24) подставляют x = ξR×h, где ξR определяют согласно указаниям 8.1.6.

0138S10-03623

а - между равнодействующими усилий в арматуре S и S'; б - за пределами расстояний между равнодействующими усилий в арматуре S и S'

Рисунок 8.4 - Схема усилий и эпюра напряжений в сечении, нормальном к продольной оси внецентренно растянутого железобетонного элемента, при расчете его по прочности при приложении продольной силы N

Расчет по прочности нормальных сечений на основе нелинейной деформационной модели

8.1.20 При расчете по прочности усилия и деформации в сечении, нормальном к продольной оси элемента, определяют на основе нелинейной деформационной модели, использующей уравнения равновесия внешних сил и внутренних усилий в сечении элемента, а также следующих положений:

распределение относительных деформаций бетона и арматуры по высоте сечения элемента принимают по линейному закону (гипотеза плоских сечений);

связь между осевыми напряжениями и относительными деформациями бетона и арматуры принимают в виде диаграмм состояния (деформирования) бетона и арматуры.

сопротивление бетона растянутой зоны допускается не учитывать, принимая при εbi³0 напряжения σbi = 0. В отдельных случаях (например, изгибаемые и внецентренно сжатые бетонные конструкции, в которых не допускают трещины) расчет по прочности производят с учетом работы растянутого бетона.

8.1.21 Переход от эпюры напряжений в бетоне к обобщенным внутренним усилиям определяют с помощью процедуры численного интегрирования напряжений по нормальному сечению. Для этого нормальное сечение условно разделяют на малые участки: при косом внецентренном сжатии (растяжении) и косом изгибе - по высоте и ширине сечения; при внецентренном сжатии (растяжении) и изгибе в плоскости оси симметрии поперечного сечения элемента - только по высоте сечения. Напряжения в пределах малых участков принимают равномерно распределенными (усредненными).

8.1.22 При расчете элементов с использованием деформационной модели принимают:

значения сжимающей продольной силы, а также сжимающих напряжений и деформаций укорочения бетона и арматуры со знаком «минус»;

значения растягивающей продольной силы, а также растягивающих напряжений и деформаций удлинения бетона и арматуры со знаком «плюс».

Знаки координат центров тяжести арматурных стержней и выделенных участков бетона, а также точки приложения продольной силы принимают в соответствии с назначенной системой координат ХОY. В общем случае начало координат этой системы (точка 0 на рисунке 8.5) располагают в произвольном месте в пределах поперечного сечения элемента.

0138S10-03623

Рисунок 8.5 - Расчетная схема нормального сечения железобетонного элемента

8.1.23 При расчете нормальных сечений по прочности в общем случае (см. рисунок 8.5) используют:

уравнения равновесия внешних сил и внутренних усилий в нормальном сечении элемента:

0138S10-03623

                                 (8.26)

0138S10-03623

                                  (8.27)

0138S10-03623

                                         (8.28)

уравнения, определяющие распределение деформаций по сечению элемента

0138S10-03623

                                            (8.29)

0138S10-03623

                                           (8.30)

зависимости, связывающие напряжения и относительные деформации бетона и арматуры

σbi = Еb× vbi× εbi;                                                    (8.31)

σsj = Еsj× vsj× εsj;                                                     (8.32)

В уравнениях (8.26) - (8.32):

Мх, My - изгибающие моменты от внешней нагрузки относительно выбранных и располагаемых в пределах поперечного сечения элемента координатных осей (соответственно действующих в плоскостях XOZ и YOZ или параллельно им), определяемые по формулам:

Mx = Mxd + N × ex;                                                    (8.33)

My = Myd + N × ey;                                                    (8.34)

здесь Mxd, Myd- изгибающие моменты в соответствующих плоскостях от внешней нагрузки, определяемые из статического расчета конструкции;

N - продольная сила от внешней нагрузки;

ex, ey - расстояния от точки приложения продольной силы N до соответствующих выбранных осей;

Аbi, Zbzi, Zbyi, σbi - площадь, координаты центра тяжести i-го участка бетона и напряжение на уровне его центра тяжести;

Аsj, Zsxj, Zsyj, σsj - площадь, координаты центра тяжести i-го стержня арматуры и напряжение в нем;

ε0 - относительная деформация волокна, расположенного на пересечении выбранных осей (в точке 0);

1/rx, 1/ry - кривизна продольной оси в рассматриваемом поперечном сечении элемента в плоскостях действия изгибающих моментов Мхи Му;

Еb - начальный модуль упругости бетона;

Esj- модуль упругости j-го стержня арматуры;

vbi - коэффициент упругости бетона i-го участка;

vsj- коэффициент упругости j-го стержня арматуры.

Коэффициенты vbi и vsj принимают по соответствующим диаграммам состояния бетона и арматуры, указанным в 6.1.19, 6.2.13.

Значения коэффициентов vbi и vsj определяют как соотношение значений напряжений и деформаций для рассматриваемых точек соответствующих диаграмм состояния бетона и арматуры, принятых в расчете, деленное на модуль упругости бетона Еbи арматуры Еs(при двухлинейной диаграмме состояния бетона - на приведенный модуль деформации сжатого бетона Еb,red). При этом используют зависимости «напряжение - деформация» (6.5) - (6.9), (6.14) и (6.15) на рассматриваемых участках диаграмм.

                                                     (8.35)

                                                     (8.36)

8.1.24 Расчет нормальных сечений железобетонных элементов по прочности производят из условий:

|εb,max| £ εb,ult;                                                        (8.31)

εs,max£ εs,ult,                                                         (8.38)

где εb,max - относительная деформация наиболее сжатого волокна бетона в нормальном сечении элемента от действия внешней нагрузки;

εs,max - относительная деформация наиболее растянутого стержня арматуры в нормальном сечении элемента от действия внешней нагрузки;

εb,ult - предельное значение относительной деформации бетона при сжатии, принимаемое согласно указаниям 8.1.30;

εs,ult - предельное значение относительной деформации удлинения арматуры, принимаемое согласно указаниям 8.1.30.

8.1.25 Для железобетонных элементов, на которые действуют изгибающие моменты двух направлений и продольная сила (рисунок 8.5), деформации бетона εb,max и арматуры εs,max в нормальном сечении произвольной формы определяют из решения системы уравнений (8.39) - (8.41) с использованием уравнений (8.29) и (8.30)

0138S10-03623

                                      (8.39)

0138S10-03623

                                     (8.40)

0138S10-03623

                                        (8.41)

Жесткостные характеристики Dij(i,j - 1, 2, 3) в системе уравнений (8.39) - (8.41) определяют по формулам

0138S10-03623

                            (8.42)

0138S10-03623

                           (8.43)

0138S10-03623

                  (8.44)

0138S10-03623

                           (8.45)

0138S10-03623

                            (8.46)

0138S10-03623

                                  (8.47)

Обозначения в формулах - см. 8.1.23.

8.1.26 Для железобетонных элементов, на которые действуют только изгибающие моменты двух направлений Мхи Му(косой изгиб), в уравнении (8.41) принимают N = 0.

8.1.27 Для внецентренно сжатых в плоскости симметрии поперечного сечения железобетонных элементов и расположении оси X в этой плоскости принимают Му = D12 = D22 = D23 = 0. В этом случае уравнения равновесия имеют вид:

0138S10-03623

                                              (8.48)

0138S10-03623

                                                (8.49)

8.1.28 Для изгибаемых в плоскости симметрии поперечного сечения железобетонных элементов и расположения оси X в этой плоскости принимают N = 0, Му = D12 = D22 = D23 = 0. В этом случае уравнения равновесия имеют вид:

0138S10-03623

                                              (8.50)

0138S10-03623

                                                (8.51)

8.1.29 Расчет по прочности нормальных сечений внецентренно сжатых бетонных элементов при расположении продольной сжимающей силы в пределах поперечного сечения элемента производят из условия (8.37) согласно указаниям 8.1.24 - 8.1.28, принимая в формулах 8.1.25 для определения Dijплощадь арматуры Asj= 0.

Для изгибаемых и внецентренно сжатых бетонных элементов, в которых не допускаются трещины, расчет производят с учетом работы растянутого бетона в поперечном сечении элемента из условия

εbt,max£ εbt,ult,                                                      (8.52)

где εbt,max - относительная деформация наиболее растянутого волокна бетона в нормальном сечении элемента от действия внешней нагрузки, определяемая согласно 8.1.25 - 8.1.28;

εbt,ult - предельное значение относительной деформации бетона при растяжении, принимаемое согласно указаниям 8.1.30

8.1.30 Предельные значения относительных деформаций бетона εb,ultbt,ult)принимают при двузначной эпюре деформаций (сжатие и растяжение) в поперечном сечении бетона элемента (изгиб, внецентренное сжатие или растяжение с большими эксцентриситетами) равными εb2bt2).

При внецентренном сжатии или растяжении элементов и распределении в поперечном сечении бетона элемента деформаций только одного знака предельные значения относительных деформаций бетона εb,ultbt,ult)определяют в зависимости от соотношения деформаций бетона на противоположных гранях сечения элемента ε1 иε2 (|ε2| ³1|) по формулам:

0138S10-03623

                                           (8.53)

0138S10-03623

                                        (8.54)

где εb0, εbt0, εb2 и εbt2 - деформационные параметры расчетных диаграмм состояния бетона (6.1.14, 6.1.20, 6.1.22).

Предельные значения относительной деформации арматуры εs,ultпринимают равными:

0,025 - для арматуры с физическим пределом текучести;

0,015 - для арматуры с условным пределом текучести.

Расчет по прочности железобетонных элементов при действии поперечных сил

Общие положения

8.1.31 Расчет по прочности железобетонных элементов при действии поперечных сил производят на основе модели наклонных сечений.

При расчете по модели наклонных сечений должны быть обеспечены прочность элемента по полосе между наклонными сечениями и наклонному сечению на действие поперечных сил, а также прочность по наклонному сечению на действие момента.

Прочность по наклонной полосе характеризуется максимальным значением поперечной силы, которое может быть воспринято наклонной полосой, находящейся под воздействием сжимающих усилий вдоль полосы и растягивающих усилий от поперечной арматуры, пересекающей наклонную полосу. При этом прочность бетона определяют по сопротивлению бетона осевому сжатию с учетом влияния сложного напряженного состояния в наклонной полосе.

Расчет по наклонному сечению на действие поперечных сил производят на основе уравнения равновесия внешних и внутренних поперечных сил, действующих в наклонном сечении с длиной проекции С на продольную ось элемента. Внутренние поперечные силы включают поперечную силу, воспринимаемую бетоном в наклонном сечении, и поперечную силу, воспринимаемую пересекающей наклонное сечение поперечной арматурой. При этом поперечные силы, воспринимаемые бетоном и поперечной арматурой, определяют по сопротивлениям бетона и поперечной арматуры растяжению с учетом длины проекции С наклонного сечения.

Расчет по наклонному сечению на действие момента производят на основе уравнения равновесия моментов от внешних и внутренних сил, действующих в наклонном сечении с длиной проекции С на продольную ось элемента. Моменты от внутренних сил включают момент, воспринимаемый пересекающей наклонное сечение продольной растянутой арматурой, и момент, воспринимаемый пересекающей наклонное сечение поперечной арматурой. При этом моменты, воспринимаемые продольной и поперечной арматурой, определяют по сопротивлениям продольной и поперечной арматуры растяжению с учетом длины проекции С наклонного сечения.

Расчет железобетонных элементов по полосе между наклонными сечениями

8.1.32 Расчет изгибаемых железобетонных элементов по бетонной полосе между наклонными сечениями производят из условия

Q£ φb1×Rb×b×h0,                                                    (8.55)

где Q - поперечная сила в нормальном сечении элемента;

φb1 - коэффициент, принимаемый равным 0,3.

Расчет железобетонных элементов по наклонным сечениям на действие поперечных сил

8.1.33 Расчет изгибаемых элементов по наклонному сечению (рисунок 8.6) производят из условия:

Q£Qb + Qsw,                                                      (8.56)

где Q - поперечная сила в наклонном сечении с длиной проекции С на продольную ось элемента, определяемая от всех внешних сил, расположенных по одну сторону от рассматриваемого наклонного сечения; при этом учитывают наиболее опасное загружение в пределах наклонного сечения;

Qb - поперечная сила, воспринимаемая бетоном в наклонном сечении;

Qsw- поперечная сила, воспринимаемая поперечной арматурой в наклонном сечении.

Поперечную силу Qbопределяют по формуле

0138S10-03623

                                                 (8.57)

но принимают не более 2,5Rbt× b × h0и не менее 0,5Rbt× b × h0;

φb2 - коэффициент, принимаемый равным 1,5.

0138S10-03623

Рисунок 8.6 - Схема усилий при расчете железобетонных элементов по наклонному сечению на действие поперечных сил

Усилие Qsw для поперечной арматуры, нормальной к продольной оси элемента, определяют по формуле

Qsw = φsw× qsw× C,                                                 (8.58)

где φsw - коэффициент, принимаемый равным 0,75;

qsw - усилие в поперечной арматуре на единицу длины элемента, равное

                                                   (8.59)

Расчет производят для ряда расположенных по длине элемента наклонных сечений при наиболее опасной длине проекции наклонного сечения С. При этом длину проекции С в формуле (8.58) принимают не менее 1,0h0 и не более 2,0 h0.

Допускается производить расчет наклонных сечений, не рассматривая наклонные сечения при определении поперечной силы от внешней нагрузки, из условия

Q1£Qb1 + Qsw,1,                                                  (8.60)

где Q1- поперечная сила в нормальном сечении от внешней нагрузки;

Qb1 = 0,5Rbt× b × h0;                                                 (8.61)

Qsw,1 = qsw×h0.                                                    (8.62)

При расположении нормального сечения, в котором учитывают поперечную силу Q1,вблизи опоры на расстоянии а менее 2,5 h0 расчет из условия (8.60) производят умножая значения Qb1,определяемые по формуле (8.61), на коэффициент, равный  , но принимают значение Qb1не более 2,5 Rbt× b × h0.

При расположении нормального сечения, в котором учитывают поперечную силу Q1,на расстоянии а менее h0 расчет из условия (8.60) производят, умножая значение Qsw,1,определяемое по формуле (8.62), на коэффициент, равный a/h0.

Поперечную арматуру учитывают в расчете, если соблюдается условие

qsw³ 0,25Rbt× b.

Можно учитывать поперечную арматуру и при невыполнении этого условия, если в условии (8.56) принимать

Qb = b2× h02× qsw/C.

Шаг поперечной арматуры, учитываемой в расчете, sw/h0 должен быть не больше значения .

При отсутствии поперечной арматуры или нарушении указанных выше требований, а также приведенных в 10.3 конструктивных требований расчет производят из условий (8.56) или (8.60), принимая усилия Qswили Qsw,1 равными нулю.

Поперечная арматура должна отвечать конструктивным требованиям, приведенным в 10.3.

8.1.34 Влияние сжимающих и растягивающих напряжений при расчете по полосе между наклонными сечениями и по наклонным сечениям следует учитывать с помощью коэффициента φn, на который умножают правую часть условий (8.55), (8.56) или (8.60).

Значения коэффициента φn принимаются равными:

при 0 £ σcp £ 0,25Rb;

1,25

при 0,25Rb £ σср £ 0,75Rb;

при 0,75Rb £ σср £ Rb;

при 0 £ σt £ 2Rbt,

где σср - среднее сжимающее напряжение в бетоне от воздействия продольных сил, принимаемое положительным. Величину σсрпринимают как среднее напряжение в сечении элемента с учетом арматуры.

σt - среднее растягивающее напряжение в бетоне от воздействия продольных сил, принимаемое положительным.

Величины σcpи σtпринимают как средние напряжения в сечениях элементов. Допускается величины σcpи σtопределять без учета арматуры при содержании продольной арматуры не более 3 %.

Расчет железобетонных элементов по наклонным сечениям на действие моментов

8.1.35 Расчет железобетонных элементов по наклонным сечениям на действие моментов (рисунок 8.7) производят из условия

M£Ms + Msw,                                                    (8.63)

где М - момент в наклонном сечении с длиной проекции С на продольную ось элемента, определяемый от всех внешних сил, расположенных по одну сторону от рассматриваемого наклонного сечения, относительно конца наклонного сечения (точка 0), противоположного концу, у которого располагается проверяемая продольная арматура, испытывающая растяжение от момента в наклонном сечении; при этом учитывают наиболее опасное загружение в пределах наклонного сечения;

Мs - момент, воспринимаемый продольной арматурой, пересекающей наклонное сечение, относительно противоположного конца наклонного сечения (точка 0);

Msw - момент, воспринимаемый поперечной арматурой, пересекающей наклонное сечение, относительно противоположного конца наклонного сечения (точка 0).

Момент Msопределяют по формуле

Ms = Ns× zs,                                                        (8.64)

где Ns- усилие в продольной растянутой арматуре, принимаемое равным Rs× As,а в зоне анкеровки определяемое согласно 10.3.21 - 10.3.28;

zs - плечо внутренней пары сил; допускается принимать zs = 0,9 h0.

Момент Mswдля поперечной арматуры, нормальной к продольной оси элемента, определяют по формуле

Msw = 0,5× Qsw× C,                                               (8.65)

где Qsw - усилие в поперечной арматуре, принимаемое равным qsw× С;

qsw - определяют по формуле (8.59), а С принимают в пределах от 1,0 h0 до 2,0 h0.

Расчет производят для наклонных сечений, расположенных по длине элемента на его концевых участках и в местах обрыва продольной арматуры, при наиболее опасной длине проекции наклонного сечения С, принимаемой в указанных выше пределах.

Допускается производить расчет наклонных сечений, принимая в условии (8.63) момент М в наклонном сечении при длине проекции С на продольную ось элемента, равной 2,0 h0,а момент Msw- равным 0,5qsw× h02.

0138S10-03623

Рисунок 8.7 - Схема усилий при расчете железобетонных элементов по наклонному сечению на действие моментов

Расчет по прочности железобетонных элементов при действии крутящих моментов

Общие положения

8.1.36 Расчет по прочности железобетонных элементов прямоугольного поперечного сечения на действие крутящих моментов производят на основе модели пространственных сечений.

При расчете по модели пространственных сечений рассматривают сечения, образованные наклонными отрезками прямых, следующими по трем растянутым граням элемента, и замыкающим отрезком прямой по четвертой сжатой грани элемента.

Расчет железобетонных элементов на действие крутящих моментов производят по прочности элемента между пространственными сечениями и по прочности пространственных сечений.

Прочность по бетону между пространственными сечениями характеризуется максимальным значением крутящего момента, определяемым по сопротивлению бетона осевому сжатию с учетом напряженного состояния в бетоне между пространственными сечениями.

Расчет по пространственным сечениям производят на основе уравнений равновесия всех внутренних и внешних сил относительно оси, расположенной в центре сжатой зоны пространственного сечения элемента. Внутренние моменты включают момент, воспринимаемый арматурой, следующей вдоль оси элемента, и арматурой, следующей поперек оси элемента, пересекающей пространственное сечение и расположенной в растянутой зоне пространственного сечения и у растянутой грани элемента, противоположной сжатой зоне пространственного сечения. При этом усилия, воспринимаемые арматурой, определяют соответствию по расчетным значениям сопротивления растяжению продольной и поперечной арматуры.

При расчете рассматривают все положения пространственного сечения, принимая сжатую зону пространственного сечения у нижней, боковой и верхней граней элемента.

Расчет на совместное действие крутящих и изгибающих моментов, а также крутящих моментов и поперечных сил производят исходя из уравнений взаимодействия между соответствующими силовыми факторами.

Расчет на действие крутящего момента

8.1.37 Расчет по прочности элемента между пространственными сечениями производят из условия

T £0,1Rb× b2× h,                                                      (8.66)

где T - крутящий момент от внешних нагрузок в нормальном сечении элемента;

b и h - меньший и больший размеры соответственно поперечного сечения элемента.

8.1.38 Расчет по прочности пространственных сечений производят из условия (рисунок 8.8)

T £